Algal Toxins 101. An introduction to Algae and Algal toxins

Greg Boyer

State University of New York
College of Environmental Science
and Forestry, Syracuse, NY

- Introduction to algae
- Harmful algal blooms
- •Why they occur
- How do we monitor

Q1. What are algae?

Simple plant-like organisms that live in the water. Use carbon dioxide and light to grow. Contain pigments

-green algae, brown

Q2. What are blue-green algae?

Q3. Can I tell blue-green algae from others when I see it?

Blue and white crust forming on bloom that is decaying

Blue tint within an algal bloom

Small cells spread throughout the water column

Blooms form surface accumulations

Gas bags in Anabaena and Aphanizomenon let them float.

Conesus Lake

Not every bloom or every scum is cyanobacteria. .

Green (and Slimy) Algae

Spirogyra and Mougeotia

More Green Algae Cladophora Spirogyr Ulothrix

Duckweed (higher plant)

Probably not bue-green algae if...

- Material is bright green in color
- Consists of long cohesive strands
- Is attached to rocks, debris or the sediment surface rather than free-floating
- Has leaves or other "structures"

Point – Can not be sure it is cyanobacteria without looking under a microscopic.

Pretty easy to tell under a microscope...

Anabaena

Microcystis

Known to a generation of scientists as Anni, Fanni and Mike (3 most common bloom forming species)

Q4. When do Blue-green algal blooms normally happen?

SEASONAL SUCCESSION OF PHYTOPLANKTON POPULATIONS

Blue-greens usually show in late summer but can be anytime

JAN FEB MARAPR MAYJUN JULIAUG SEP OCT NOV DEC

Diatoms eat fast, Green algae are efficient, Blue-green algae cheat

Q5. So why do we care about them?

Some (not all) BGA can be harmful:

- liver toxins or heptotoxins.
- Neurotoxins
- Other very nasty compounds
 - Swimmers itch
 - Alzheimer's-like agents.

When they die – they use up oxygen.

Q6. Do Blue-green algae kill fish?

Not directly

- Marine toxins (FL red tides) kill fish directly
- Blue-green algae grow too much
- When they die, it depletes oxygen in the water
- Fish suffocate

Q7. Who makes these toxins?

Microcystis makes a family of toxins called microcystins.

- Microcystis aeruginosa
 - non-N fixer.
 - Likes organic N
 - forms surface blooms
- Very common genera
 - Found in every lake in the US
- Not all Microcystis is toxic
- Microcystins are potent toxins (40x more toxic than cyanide)
- Toxin is very stable to boiling
- 1 ug/L allowed in drinking water
- 20 ug/L for recreational contact

(remember Mike?)

Q8. Has anyone ever died from these toxins?

Not in the US. Most affects are with animals:

.....associated with the *Anabaena Flos-aquae* bloom were estimated deaths of 5000-7000 gulls, 560 ducks, 400 coots, 200 pheasants, 50 squirrels, 18 muskrats, 15 dogs, 4 cats, 2 hogs, 2 hawks, 1 skunk, 1 mink, plus numerous song birds.

Q9. What happened in Toledo last year?

State of emergency declared in Lucas County after toxins found in Toledo water

Microcystin found in samples; boiling not recommended

BLADE STAFF

Q10. Was the water unsafe?

How do you determine safe levels of toxin in water?

- Start with a mouse
- Measure the highest level that has no effect.
 - No Observed Adverse Effect Level (NOAEL)
 - 40 μ g/kg body weight for microcystins
- Include safety factors
 - 10x (mice are not people)
 - 10x (not every mouse is the same)
 - 10x (limited number of studies)
- Average body weight of adult
- Consume 2 L water per day for life

= 1 ug / L (ppb)

(guideline value – not regulatory)

(EPA currently has no guidelines; most states use the WHO values)

Q11. Can what happened in Toledo happen here?

- Microcystis and microcystins are very abundant in NYS.
 - Half of our samples tested have the potential.
 - About half made toxin.
 - About 10-15% of samples are at levels of concern for drinking water. (>1 ppb)
- potential ≠ production
- In Toledo, the algae were concentrated by the wind
- More algae = more likely that it will be toxic.

Careful of wind concentrated scums.

2014 CSLAP results

Open water samples

- 865 samples
- 2 positive (0.23%)
- Range (1.1 1.4)

"Bloom" Samples

- 290 samples
- 70 positives (24%)
- Range (0.3 7,710)

Q12. Who is most at Risk?

- Pets!
- Small children.
- People or animals who must drink from marginal water supplies for long periods of time.

Q13. Why do blooms occur?

Q14. What can I do to prevent a bloom?

Reduce nutrients

Blooms need Phosphorus to grow

Calm waters

Wind can prevent a bloom from growing

Water temperature must be above 50°F

Q15. What do I do if I see a bloom?

- 1. Remember not all blooms are toxic.
- 2. If it is a bloom, avoid contact.

Be careful of blooms attached on other plants (long black hair)

4. If you pet gets into the water, wash them off with clean water from a hose.

Bonus Questions?

If not now – then free to ask them later in the comfort of your home.

Glboyer@esf.edu

And thanks to all those who have donated pictures!