Harmful algal blooms: A quick recap of the 2014 sample season

Greg Boyer

State University of New York
College of Environmental Science
and Forestry, Syracuse, NY

- Jeff Russell
- Samantha Weber
- Marci Savage
- Justine Schmidt

Some rash assumptions.....

- Most of you are here because you are interested in your CSLAP report.
 - Introduction to HABs: 9:00 tomorrow morning
 - Overview of State Results (Scott)
 - Setting up a monitoring program; 11:15 tomorrow
- What is in your CSLAP report.....
- What happened statewide.

Lets start with the CSLAP reports.....

So you got an unfavorable rating on your Biological health for Harmful Algae. Where did that number come from?

2-minute review

- Blue-green algae are common in our waters.
- High nutrient conditions can lead to high levels of algae (blooms) in the water.
- Some, not all of the algae produce toxins (HAB)
- CSLAP monitors for those blooms and toxins
- Scott generates a HAB report

Frint Story

State of emergency declared in Lucas County after toxins found in Toledo water

Microcystin found in samples; boiling not recommended

HOME → NEWS → LOCAL

Published: Saturday, 8/2/2014 - Updated: 2 seconds ago

have answers later today on when Toledo-area water

supply will be safe to drink again

Lets follow what happens to your samples.....

You collect your samples

Mail...

Information you provided is carefully entered into a computer. We assign a separate ESF id number.

SF MICROCYSTIS

Sample No. 11-18-02

Next your samples are processed.....

"FluoroProbe" tool measures the amount of Blue-green algae chlorophyll and total chlorophyll

A microscope is used to identify what Bluegreen algae are present

Photographs taken if needed

How do these instruments work?:

All plants collect light which is used for photosynthesis.

All plants contain chlorophyll – this is what makes them green......

Different algae use different pigments to collect light

- Green Algae
- Yellow algae (dinoflagellates and diatoms)
- Blue-green algae

We can use the pigments to estimate the amount of algae in the water

CSLAP uses a FluoroProbe for its monitoring.

- BBE FluoroProbe rapidly determine five classes of algae
- Your CSLAP report contains the FP-chl and FP-BGA values

Fig. 1: Assignment of several algal divisions in spectral groups

We are looking for potentially toxic species under the microscope...

Anabaena

Microcystis

Known to a generation of scientists as Anni, Fanni and Mike (3 most common bloom-forming species)

Next your samples are processed for toxins.....

Bloom samples are freeze-dried overnight(s)

Cells are broken with ultrasound

Liquid is transfer to a vial for analysis and storage

We use a number of different tests for toxins.....

Mostly we test for specific toxins using mass spectroscopy...... There are many different toxins we look at include:

microcystins (14 forms) (liver toxin)

anatoxins (2-6 forms) (neurotoxin)

cylindrospermopsins (3 forms) (cell toxin)

These show up in your CSLAP report as MC-LR, Ana-a and Cyl

Who makes these toxins?

Microcystis makes a family of toxins called microcystins.

- Microcystis aeruginosa
 - non-N fixer.
 - Likes organic N
 - forms surface blooms
- Very common genera
 - Found in every lake in the US
- Not all Microcystis is toxic
- Microcystins are potent toxins (40x more toxic than cyanide)
- Toxin is very stable to boiling
- 1 ug/L allowed in drinking water
- 20 ug/L for recreational contact

(remember Mike?)

What happens with the numbers?

Score	Criteria
Favorable	Toxins below 4 ug/L Algae below 10 ug/L
Threatened	Toxins exceed 4 ug/L microcystin toxins FP chlorophyll greater than 10 ug/L BGA CHL Visual evidence of Bloom or high levels of PC
Unfavorable	Toxins exceed 10 ug/L open water, 20 ug/L bloom FP chlorophyll greater than 30 ug/L BGA CHL
Not known	No HAB data available for Lake

Where do these numbers come from?

- Start with a mouse (how cute!)
- Measure the highest level that has no effect.
 - 40 μ g/kg body weight for microcystins
- Include safety factors
 - 10x (mice are not people)
 - 10x (not every mouse is the same)
 - 10x (limited number of studies)
- Average body weight of adult
- Consume 2 L water per day for life

World Health Organization DW Guideline value:

= 1 ug / L (part per billion)

(EPA currently has no guidelines; most states use the WHO values)

- Recreational Contact more difficult
 - 8 ug/L -50 ug/L (CSLAP uses 10-20 ug/L)

Some random observations about CSLAP HAB samples.

Always remember as bad as you think you have it, someone has it worse.

(Taihu is the drinking water source for 7 million people!)

What is the Shipping time? (2014 data: Collection to receipt)

Most volunteers collect samples on a weekend (Saturday),

Sample shipped on Monday arrive Thursday

Several options

- Courier (Blooms)
- Drop off Locations
- Hand delivery

What is the analysis time? (2014 microcystin data)

Cyanobacteria (FluoroProbe)

Most samples have low levels of BGA:

BGA specific Chl-a ranges from 0-100% of total Chl-a.

Scum levels can be very high:

> 600,000 ug/L chl-a

Visual exams show: Microcystis, Anabaena, Aphanizomenon, diatoms fish, duckweed, etc.

Microcystin abundance in NY

Most samples are non-toxic:

- 65-75% 2011-2013
- 90% in 2014

Toxin levels range: 0.3 ug/L (detection limit) 12,300 ug/L (scum)

WHO Recreational levels of <20 ug/L would catch 75% of the samples

Other toxins:
Anatoxin-a (yes)
CYL, BMAA (no)

How do my numbers compare with others?

Top five microcystin lakes

- 1. Mohegan Lake (7712)
- 2. Lime lake (1600)
- 3. Mohegan Lake (1555)
- 4. Mohegan Lake (898)
- 5. Lawson Lake (490)
- 6. Mohegan Lake
- 7. Mohegan Lake, etc.

Top five cyanobacteria lakes (100% BGA >20,000+)

- Beaver dam Lake
- Deans Pond
- Java Lake
- Cossayuna Lake
- Lake Mohegan

Three of the top cyanobacteria blooms had little toxicity (<10 ug/L)

Careful of wind concentrated scums.

2014 CSLAP results

Open water samples

- 865 samples
- 2 positive (0.23%)
- Range (1.1 1.4)

"Bloom" Samples

- 290 samples
- 70 positives (24%)
- Range (0.3 7,710)

CSLAP Toxin Composition

(2014 microcystin data)

Are there other toxins I should worry about?

Some Anabaena sp. make anatoxin-a

Remember Anni?

- Anatoxin –a
 - Potent Neurotoxin.
 - Less toxic but quicker.
 - Very rare.
 - Toxin is not very stable
- Responsible for a number of animal fatalities
- Often shows up early in the season

New toxins are appearing constantly on the internet.....

BMAA

(beta methyl amino alanine)

Potent neurotoxin in Guam associated with ALS-Parkinsonism dementia.

May be produced by bluegreen algae -

Not found in New York but we continue to test for it

Take-home messages:

- 2014 was a moderate year for blue-green algae and microcystin toxins
 - Most lakes were better than in past years
 - Some exceptions
- In contrast, 2014 was a much higher year for the neurotoxin anatoxin-a
 - More occurrences (21 vs 10)
 - Higher levels $(1-108 \text{ ug/L vs } 0.2-18 \text{ ug/L})_{n=10}$
 - Rarely the same lakes as for microcystins
- Other toxins remain absent

Questions?

If not now – then free to ask them later in the comfort of your home.

Glboyer@esf.edu

And thanks to all those who have donated pictures!