

Department of Environmental Conservation

Citizen Science: To Assessment and Beyond

Anthony Prestigiacomo, Research Scientist

Finger Lakes Watershed Hub, Division of Water, Bureau of Water Assessment & Management

NYSFOLA May 4th, 2018

Long, Long Ago in a Lake Far, Far Away . . .

- Citizens Statewide Lake Assessment Program
 - volunteer lake monitoring/education program
 - managed by NYSDEC & NYSFOLA
 - initiated 1986 and mandated by ECL (17-0305)

Consistent approach, approved methods, certified labs, quality data

CSLAP

Traditional CSLAP Objectives and Uses

- 1. Education and outreach
- 2. Data collection
 - water quality assessments and reporting
- 3. Baseline and trends in lake health
- 4. Special studies (HABs, AIS)

CSLAP: A New Hope

Traditional CSLAP Objectives and Uses

- 1. Education and outreach
- 2. Data collection
 - water quality assessments and reporting
- 3. Baseline and trends in lake health
- 4. Special studies (HABs, AIS)

Emerging Needs

Development of complex water quality "tools" for advanced understanding and management (9E, TMDLs)

What are models?

A "model" is simplification of a real system (like a lake)

- A model is a collection of equations that represent the physical, chemical, and biological mechanisms of a system
 - Movement and circulation of water
 - Fate and transport of pollutants
 - Algal response to eutrophication

Nutrient and Algae "Interactions" in a Model

NEW YORK STATE OF OPPORTUNITY

Mmm. Modeling . . . Important, It Is

- <u>understand</u>, test, perturb, or control a system
- simpler, faster, less expensive than analyzing the real system all the time
- predict water quality responses to phenomena (effects of climate change)

Varying Complexity

Simple \$	Moderate \$\$\$		Complex \$\$\$\$
Empirical	<u>1-D</u>	<u>2-D</u>	<u>3-D</u>
(statistical)	Bathtub	CE-QUAL-	EFDC
equations	Lake 2K	W2	ELCOM

In my Experience There is No Such Thing as Luck

- Quality Program Components, Planning, and Strategy (QAPP)
- 2. Data collection and data integrity
- 3. Model input development and preparation
- 4. Parameter evaluation and developing inputs
- 5. Model Calibration
- 6. Model Validation (or testing)
- 7. Analysis and Model Use

Data Type			
Bathymetry	Geospatial coordinates and water depth, morphology		
Physical	Temperature and salinity, density		
Inflows	Water and materials coming into a lake		
Water Balance	Changes in water elevation and outflows		
Meteorology	Temperature, wind speed, wind direction		

Data Type			
Bathymetry	Geospatial coordinates and water depth, morphology		
Physical	Temperature and salinity, density -> Water movement		
Inflows	Water and materials coming into a lake		
Water Balance	Changes in water elevation and outflows		
Meteorology	Temperature, wind speed, wind direction		

Department of Environmental Conservation

12

Data Type	
Bathymetry	Geospatial coordinates and water depth, morphology
Physical	Temperature and salinity, density
	Water and materials coming
Intiows	into a lake (streams, WWTPs)
Water Balance	into a lake (streams, WWTPs) Changes in water elevation and outflows

Data Type	
Bathymetry	Geospatial coordinates and water depth, morphology
Physical	Temperature and salinity, density
Inflows	Water and materials coming into a lake
Water Balance	Changes in water elevation and outflows
Meteorology	Temperature, wind speed, wind direction

Data Type	
Bathymetry	Geospatial coordinates and water depth, morphology
Physical	Temperature and salinity, density
Inflows	Water and materials coming into a lake
Water Balance	Changes in water elevation and outflows
Meteorology	Temperature, wind speed, wind direction

Proper setup is key, otherwise the model won't represent the system!

Do or Do Not, There is No Try

Basic Water Quality Needs

Temperature, salinity

Phosphorus (multiple forms)

Nitrogen (multiple forms)

Carbon (multiple forms)

Silica

Algal community

Zooplankton community

Others (mussels, sediments, etc)

In-lake water quality needs can be substantial

These inputs guide development of the model's water quality portion

Otherwise models are built on assumptions

I Find Your Lack of Faith Disturbing

"Essentially, all models are wrong, but some are useful"
George E. P. Box

A model is only as good as the data used to construct it!

Water Quality Calibration – An Important Step

Parameter	Description		Typical Values	Calibrated Value	20
WSC	Wind sheltering coefficient	-	0.8-1.2	1.1-1.2	
BETA	Fraction of incident solar radiation absorbed at the water surface	-	0.45	0.45	al
EXH20	Extinction for water	/m	0.25	0.25	
EXA	Extinction due to algae	m³/m/g	0.1-0.2	0.2	
AG, group 1	Maximum growth rate	/day	1 – 2.5	1.5	0
AS, group 1	Settling rate	/day	0-1	0.1	(marked)
ASAT, group 1	Saturation intensity at maximum photosynthetic rate	W/m ²	10-150	90	
AT1, group 1	Lower temperature for algal growth	°C	4-10	8	
AT2, group 1	Lower temperature for maximum algal growth	°C	6-20	12	
AT3, group 1	Upper temperature for maximum algal growth	°C	15-25	20	
AT4, group 1	Upper temperature for algal growth	°C	20-30	0	muset/spuedofeces
ALGP, group 1	Stoichiometric equivalent between organic matter and phosphorus		0.003- 0.014	Zooplankt	on contails → LDOC, LDOP, LDON
ALGN, group 1	Stoichiometric equivalent between organic matter and nitrogen		0.04-0.11		erzination Ngae erzination
AHSP, group 1	Half-saturation constant for phosphorous	g/m	0.002 to 0.1	↓ setting	museri inpetton → CO2 → NH3 →
AHSN, group 1	Half-saturation constant for nitrogen	g/m³	0.005-0.2		→ SRP —
ACHLA, group 1	Ratio between algal biomass and chlorophyll a in terms of mg algae/µg chl a	mg algae/µ g chl a	0.01 to 0.4		Silica NOX

Water Quality Calibration

Calibration – Another Example

Model Validation – Testing the Calibration

Acceptable Levels of Wrongness

Percent difference between simulated and measured values (summer average values)

Water quality and nutrients Very Good <15 Good 15-2

Fair

Poor

Now Witness the Firepower of this Fully Operational Model

Reduce a Nutrient Source

Increase the Temperature?

CSLAP: A New Hope?

Emerging and expanding role of volunteer scientists

- A substantial portion of calibration and validation datasets can be collected by CLSAP
 - Some program adjustments, additions

Temperature, salinity Phosphorus (multiple forms) Nitrogen (multiple forms) Carbon (multiple forms) Silica Algal community Zooplankton community Others

Data Needs

Consistent approach, approved methods, certified labs, quality data

Owasco Lake

- 2018 In-lake Model Study
 - Similar to other Finger Lakes modeling projects
 - 2D model
 - Water quality, biology
 - Eutrophication and HABs

CSLAP data – calibration and primary validation data sets

Help Us CSLAP, You're Our Only Hope

Advantages of the citizen science approach/integration in modeling

- 1. Quality program and data
- 2. Dedicates resources to specialized questions/ research
- 3. Local expertise is invaluable
- 4. Promotes interest/buy in

CSLAP's expanded role will be vital to the protection/ remediation of NY resources

Thank You and May the Fourth Be With You

Anthony Prestigiacomo

Research Scientist 615 Erie Bvd. West; Syracuse, NY 13204 Anthony.Prestigiacomo@dec.ny.gov (315) 426-7452

Connect with us:

Facebook: www.facebook.com/NYSDEC Twitter: twitter.com/NYSDEC Flickr: www.flickr.com/photos/nysdec

