Finding the Bad Stuff

(Challenges in Citizen Monitoring)

Scott A. Kishbaugh, PE
Chief, DOW Lake Monitoring and Assessment Section
scott.kishbaugh@dec.ny.gov
518-402-8286
Many many many NYS lakes, ponds and reservoirs
(7,500-16,000+, more or less)

Long history of monitoring (professionals and citizen scientists)
What these monitoring efforts have in common…or what is typical monitoring?

Open water sampling

Assumes relative consistency or predictable changes in time (t) and space (x, y, z)

Seeking information about representative conditions to

- Characterize for overall waterbody assessment
- Identify problems – general water quality or specific issue
Measuring stuff

..through chemical signals

...that are normally distributed
Disorienting to Reorienting
Physical and chemical indicators are often fairly stable in space and time.
Routinely collected data can lead to…. (whether collected from professionals or citizen scientists)
Some indicators more heterogeneous in time (t) and space (z)

...or in xy space

These differences may be important if sampling objective is presence / absence ("finding stuff") rather than characterization
Agency/professional vs. citizen science

Professional monitors:
Highly trained
Expensive equipment (specialized, continuous,…)
More legal authority
Less familiar with local conditions
“Pop in” sampling (limited x, y, and z; very limited t)

Citizen scientists:
Some limits on training
Some limits on equipment
Less legal authority
More familiar with local conditions
“Constant” surveying (limited z, y, unlimited x and t)
The power of volunteers

Committed and passionate environmental stewards

Donate time and money and effort

Live at lake- responsive to immediate and short-term changes (can adjust to variations in t)

Familiar with what is “normal” at their lake
 - Can detect changes in lake condition (x and y)
 - Can identify when unusual event occurs

Environmental data used to manage lake (most lake management in NYS is local and not regulatory)

Expands data collection throughout the state – beyond Agency survey sites= greater understanding of regional patterns and issues
Of all the issues plaguing all (some) of the lakes in all (part) the state....

Harmful algae blooms

Invasive Species

[Images of harmful algae blooms and invasive species]
HAB sampling challenges

Imagine a lake with five possible bloom sampling locations:

- **S1** = mid lake (open water): representative? (S2 = near the bottom in the middle)
- **S3** = shoreline not used
- **S4** = SE corner, some use
- **S5** = boat launch, heavy use
HABs: a 4D problem we try to characterize in 1D space and time
Time Factor

If you only survey once or annually, you are likely to miss very infrequent blooms, but also likely to call it a low risk lake (few false negatives)
Monthly sampling may also miss blooms that hit once a year- these blooms represent a (slightly) higher risk.
Single blooms may be more like this….

Even very frequent surveys may miss peak
Up and Down: Z factor

Buoyancy:
- Concentrate from top 4m to top 4cm of lake
- Migrate top to bottom of photic zone (and back)

Types:
- Floating
- Suspended
- Benthic

Sampling:
- Picking wrong depth/sampling types misses layer
- Huge implications for PWS and beaches

Timing:
- May be at different depth at time of sample
- Differences in toxins (lingering Z)
Example of Z

Owasco Lake Drinking Water
- 30+ feet deep intake
- Bloom first observed at plant on 9/22
- (Low level) toxins first detected at plant 9/25

Blooms documented in this time and area
- Only widespread bloom 9/19 reported NE side (zone 1)
- Only widespread bloom on 10/3 reported NW side (zone 22)

None reported in open water at that time
Y Factor

Wind movement
- Push / concentrate blooms from center to shore
- Blooms pushed into isolated coves may not escape
- WHO: can concentrate 10-1000x
- How much vertical movement (Z) near shoreline?

Blooms vs toxins
- Are they most concentrated at shore?
- Are they synchronized (bloom and toxin peak)?

Timing
- Exposure issues after visual evidence gone
- Surveying and sampling issues (shoreline vs. boat, access, …)
Lessons in Y: Honeoye Lake
Deans Pond

2015 Open Water Algae Samples

2015 Shoreline Algae Samples
X Factor

Wind movement
- How much do blooms move laterally along the shore? (when does Y movement become X movement?)
- Can multiple shorelines hold trapped blooms?
- How heterogenous are blooms in X space?

Timing
- How long does it take for bloom to move along X?
- When are beaches at risk from lateral X movement?
Song Lake bloom reports usually limited to north end of lake: “Pea soup” bloom, usually wind driven

...except when wind pushes them to the south shore: “green dots”
And then sometimes the entire lake is green

Widespread / lakewide bloom
Green dots and streaks
No wind
Sampling and reporting in a 4D world

Sampling usually represents a single X, Y, Z and T

How important are variations in X, Y, Z space and T time?

What is the consequence of missing blooms in XYZT?
 Missed in X (impacts for multiple shorefront users)
 Missed in Y (variations in intensity)
 Missed in Z (invisible or impacting deep water intakes)
 Missed in T (do toxins end when blooms end?)
Goals of HABs sampling / surveillance (WHY)?

Representative condition
- (open water)
- (shoreline)

Worst case scenario
- Presence / absence
 - Anywhere on waterbody
 - Specific location - beach, PWS intake, my property

Research

CSLAP sampling goal

DOH regulatory goal

Public goal

Other goals

DEC HABS PROGRAM GOAL = ALL OF THIS
How to optimize Z, Y, X and T

Z: integrated sampling through photic zone? (at multiple X,Y) water intake sampling? (NOT DONE THRU CSLAP)

Y: surveys along perpendicular transects? Assume max bloom at shore? Use of remote sensing, buoys and drones? (CSLAP OPEN WATER/SHORE SAMPLING)

X: inspect entire shoreline? Leeward shore only? Drones? (EXTENSIVE USE OF SHORELINE SURVEILLANCE ZONES/TEAMS)

T: survey at specific times (AM)? Before weekend exposure? (NOT DONE THRU CSLAP)
Challenges in XYZ:

Finding a needle in a haystack?

2013 Cayuga Lake survey
Hunting for hydrilla in the lake

50m x 50m grid

1942 rake tosses (2 per site)
Hydrilla found in <1% of sites
FINDING THE GOOD STUFF

Callitriche hermaphroditica (autumnal starwort)

Found in 1 site of 304 in 2008, 2009

Not found 2010-2016
Erie Canal- 90% tubers sprout in early June; start of herbicide treatment window

...but plants don’t emerge until late June to early July

...and may not be visible until late summer
Curlyleaf Life-Cycle in MN

- **Fall**
- **Winter**
- **Spring**
- **Summer**
- **Fall**

Curlyleaf Turion

© Copyright 2005, Freshwater Scientific Services, LLC
Challenges in T

When you look might determine what you find

Plant growth cycle may be out of sync with surveying timeline

Implications of missing (too early) can be significant
Why do we care?

Costs for AIS management
Cayuga hydrilla (74+ acres) = $300-500k annually
Erie Canal hydrilla (15 miles) = $500k annually

Ecological impacts
Loss of eelgrass /SAV in Hudson River
Avian Vascular Myelinopathy (AVM)
Significant oxygen swings

Recreational and economic impacts
Clogging boat propellers
Elimination of swimming and bathing areas
Loss in property values
The hammer

PIRTRAM = point-intercept, rake toss, relative abundance method

USACE standardized technology
 Tethered two sided rakes
 Uniformly distributed grad sampling points
 Cornell-derived relative abundance scale

Advantages:
 Relatively easy to monitor many sites
 Lake to lake comparisons
 Collect/ID submergent plants from surface

Disadvantages:
 Some plants missed by rake
 Does not hit every nail
The nails

Find (some/all) taxa in waterbody
Plant lists
FQI

Find evidence of initial infestation of specific AIS
Early detection
Rapid response

Evaluate frequency distribution of specific or all taxa
Estimate biomass or abundance
Modified FQI
Evaluate plant control measures
How to best find AIS?

NYSFOLA shoreline AIS surveys?

Focus on areas where AIS likely to be found or wash up

Might help to narrow focus and identify where to look (more carefully)

Go to Jan Andersen’s talk for more information
How to resolve AIS XYZT issues

SUNY Albany/DEC (NEAPMS / U Hartford?) Study of alternative methods

- shoreline visual survey
- boatover survey
- diver assisted line intercept survey
- remote sensing methods
- hydroacoustic surveys
- eDNA methods (future)

Study design

- lakes with limited evidence of AIS w/ extensive PIRTRAM data
- lakes with no evidence of AIS
- lakes with multiple access points near other AIS sites
In the meantime….

Optimize Z: focus look on the surface where plants are visible and could spread more easily

Optimize Y: look on the shoreline- fragments more likely to land there

Optimize X: focus on the areas where plants are likely to land or grow- boat launches, inlets, outlets,..

Optimize T: look at the times when plants are likely to be visible (but not too late to prevent their spread)
At the end of the day…..

Lake issues increasingly dominated by stressors that defy traditional monitoring strategies

Complexities in XYZT require alternative surveillance methods

Citizen scientists play an indispensable role in this surveillance