Department of Environmental Conservation

What we've learned about HABs in New York

Scott Kishbaugh CSLAP Director, NYSDEC

So what do they actually do?

Every other week CSLAP volunteers
Collect open water HAB samples
Filter in field and send raw water and filter to labs
Complete field form showing extent, type, spatial coverage

When blooms are observed
Collect shoreline scum sample Send raw water directly to ESF Complete field form
Send periodic updates to DEC

And what about ESF and UFI?

Samples received almost every day by ESF and UFI
ESF: raw open water and filters, and shoreline bloom samples
ESF: analyzes Total and BG chlorophyll (fluoroprobe)
ESF: analyzes for several toxins and microscopies (high chl)
UFI: analyzes phycocyanin and total fluorometric chlorophyll

Reports to DEC
Fluoroprobe results daily
Toxin results in batches
Fluorometric results Fridays

And then what does DEC do.....?

Waterbodies with Blue-Green Algae Notices

Map Number	Waterbody Name	County	Status	Extent of bloom	Status Date	Type of Sample	Change in Status
1	Allegheny Reservoir+	Cattaraugus	Confirmed	Large localized	10/7/2013	Lab sample	Updated listing
2	Beaver Dam Lake	Orange	Confirmed	Small localized	10/7/2013	Lab sample	Updated listing
3	Browns Pond	Orange	Suspicious	Widespread	10/3/2013	Visual	No change
4	Burden Lake	Rensselaer	Confirmed	Small localized	9/29/2013	Lab sample	No change

All ESF/UFI reports forwarded to DEC and DOH regions and lake assn (sampler) within 12 hours of receipt

Weekly webpage update of all credible HAB reports from CSLAP, ESF, Stonybrook, public

How we make the call

DEC HAB website characterizes conditions "Suspicious"

Visual evidence of BGA bloom
No lab sample to verify
"Confirmed"
Visual evidence of BGA bloom AND
BG chlorophyll (FP) > 30 OR
Microscopics $=$ BGA dominance
"Confirmed with high toxins"
Confirmed BGA bloom AND
MC-LR shore sample > 20 OR
MC-LR open water > 10
Updated weekly with new information All sampled waterbodies cited on page

NEW YORK
SIAIEOURK
SPFORTUNITY

So what have we learned

Where? (in the state)

What? (kind of algae)

How? (much has it changed?)

When? (are they occurring)

Why?

Where?

A short (but very long) history of HABs in NYS

3.5 billion years ago they were captured in the fossil record

400 years ago, Samuel Champlain's description of Oneida Lake suggested algae blooms were common on the lake

200 years later, James Fenimore Cooper observed "lake blossoms" on the lake, now described as "blooms"

Similar blooms were documented on a number of the lakes by biologists during the New York Conservation Department Biological Surveys from 1924-1938

Fast forward to "yesterday"

Lake Champlain 2008

Lake algae may be killing animals, birds

Authorities: Don't fish or touch the water. Water samples to be tested.
By Delen Goldberg Staff writer
A dog climbed out of Lake Neatahwanta in Fulton after a short swim Tuesday night, broke into convulsions and began vomiting.

While the toxin is unlikely to be fatal to humans, officials said high levels of the poison can cause liver and nervous system damage.
"Until we find out for sure what is going on, it's better that people stay away, said Evan Walsh, associate public health sanitarian for the county Health Department.
Authorities posted signs Thursday on parts of the lake's

Sodus Bay (August 2010)

Honeoye Lake (September 2010)

Lime Take 2008

The Where

(have blooms been found...?)

2011 Bloom Locations

2012 Bloom Locations

2013 HAB "Season"

Season = June thru October 77 waterbodies reported blooms

- 62 "confirmed" (out of 170 sampled waterbodies)
- 15 "suspicious"

57 lakes identified through DEC or other baseline monitoring programs

20 lakes identified by public reporting outside of baseline monitoring programs

2013: New York is a HABsy state...

TOXIC ALGAE:

New York had 50 laboratory confirmed toxic algae warnings, an indication of how a strong monitoring system can reveal the true depth of the problem.

[^0]
2014 HAB "Season"

Season = June thru October 93 waterbodies reported blooms

- 74 "confirmed" (out of 195 sampled waterbodies)
- 19 "suspicious"

75 lakes identified through DEC or other baseline monitoring programs

18 lakes identified by public reporting outside of baseline monitoring programs

Where they are: 2013-14 results Western NY and

 Finger Lakes(PA border to eastern edge of Finger Lakes)
44 lakes sampled by DEC and partners in 2013 or 2014
29 lakes reported HABs in 2013 or 2014
2014 TP in HAB lakes =46 ug/l
2014 TP in non-HAB lakes =18 ug $/ 1$
7 waterbodies cited as having "high
 toxins"
Large Finger Lakes generally do not exhibit regular HABs

Where they are- 2013-14 results Downstate Region

 (Capital District to NYC and LI) 95 lakes sampled by DEC and partners in 2013 or 201466 lakes reported HABs in 2013 or 2014
Avg TP in HAB lakes $=45 \mathrm{ug} / \mathrm{l}$
Avg TP in non HAB lakes $=21 \mathrm{ug} / 1$
27 waterbodies cited as having "high
 toxins"

Where they sometimes are: 2013-14

Central Region

(between FL, Adk, Downstate)
113 lakes sampled by DEC and partners in 2013 and 2014
51 lakes reported HABs in 2013 and 2014

Avg TP in HAB lakes =43 ug/l) Avg TP in non HAB lakes $=16$
 ug/l
15 waterbodies cited as having "high toxins"

Where they aren't (definitely): 2013-14 Adirondacks

(includes $\mathrm{E}, \mathrm{N}, \mathrm{W}$ boundaries) 86 lakes sampled by DEC and partners in 2013 and 2014
10 lakes reported HABs in 2013 and 2014
Avg TP in HAB lakes $=24 \mathrm{ug} / \mathrm{l}$ Avg TP in non HAB lakes $=9 \mathrm{ug} / 1$
2 waterbody cited as having "high
 toxins"
All HABs lakes in boundary (SE and NW of Blue Line)

Come again, but not in so many colors?

Region	\# 13-14 Sampled Lakes	\# 13-14 HAB Lakes	2014 avg TP HABs Lakes	2014 avg TP non - HABs Lakes	\# Lakes w/ High Toxins
Western and Finger Lakes	37	24	$46 \mathrm{ug} / \mathrm{l}$	$18 \mathrm{ug} / \mathrm{l}$	7
Downstate and Long Island	95	66	$45 \mathrm{ug} / \mathrm{l}$	$21 \mathrm{ug} / \mathrm{l}$	27
Central	113	51	$44 \mathrm{ug} / \mathrm{l}$	$16 \mathrm{ug} / \mathrm{l}$	15
Adirondacks (region)	86	10	$24 \mathrm{ug} / \mathrm{l}$	$9 \mathrm{ug} / \mathrm{l}$	2

What do they (BGA) look like?

YES

Samplers asked to report on open water algae since 2011

Samplers asked to report on shoreline algae since 2013

Reporting on blooms....

Year	2014	2013	2012
\# Open Forms	864	777	581
\% Open Forms	92%	80%	83%
\# Shore Forms	736	570	0
\% Shore Forms	78%	59%	0%

Let's go to the data (2012-14, open water)

| Type | N | FP_TChl | FP_BGChI | MC | Zsd | FIChl | TP | TN:TP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spilled Paint | 22 | 23 | 16 | 0.9 | 1.3 | 42 | 79 | 37 |
| Pea Soup | 52 | 23 | 17 | 0.8 | 1.6 | 36 | 63 | 47 |
| Green Streaks | 27 | 24 | 16 | 0.9 | 1.4 | 33 | 67 | 43 |
| Green Dots | 69 | 19 | 13 | 1.4 | 2.0 | 25 | 48 | 50 |
| Any of last 4 | 136 | 20 | 14 | 1.1 | 1.8 | 30 | 56 | 47 |
| Bubbling Scums | 26 | 160 | 3 | 0.2 | 2.1 | 17 | 38 | 50 |
| Discolored | 194 | 10 | 5 | 0.3 | 2.4 | 18 | 34 | 55 |
| Duckweed | 15 | 6 | 3 | 0.3 | 2.0 | 15 | 34 | 39 |
| Other | 22 | 10 | 6 | 2.2 | 2.8 | 21 | 30 | 64 |
| Any of last 4 | 263 | 27 | 5 | 0.5 | 2.4 | 18 | 35 | 55 |
| No blooms | 750 | 4 | 2 | 0.2 | 3.5 | 9 | 20 | 104 |

"Classic" image samples show higher BGA, TP, MC; lower N:P and clarity

Some "non" BGA image samples show higher total algae (bubbling scums), higher toxins ("other")

But sometimes a few samples skew results

Type	N	\%FP	\%FP	\%FP	\%FP		\%MC>20	FlChl		
		TChl >50	BG > 30	BG >20	BG>15	\%MC>4		Zsd<1.2	>30	TP>20
Spilled Paint	22	5\%	14\%	36\%	45\%	9\%	0\%	45\%	45\%	73\%
Pea Soup	52	10\%	21\%	37\%	40\%	4\%	2\%	40\%	40\%	69\%
Green Streaks	27	4\%	19\%	33\%	41\%	7\%	0\%	48\%	33\%	74\%
Green Dots	69	4\%	14\%	23\%	29\%	4\%	1\%	29\%	26\%	52\%
Any of last 4	136	7\%	15\%	26\%	32\%	4\%	1\%	33\%	30\%	58\%
Bubbling Scums	26	4\%	4\%	4\%	8\%	0\%	0\%	38\%	19\%	0\%
Discolored	194	3\%	2\%	6\%	7\%	1\%	0\%	25\%	18\%	0\%
Duckweed	15	0\%	0\%	0\%	0\%	0\%	0\%	7\%	7\%	0\%
Other	22	5\%	9\%	9\%	9\%	5\%	5\%	23\%	18\%	0\%
Any of last 4	263	3\%	4\%	8\%	9\%	1\%	0\%	26\%	17\%	0\%
No blooms	750	0\%	1\%	2\%	2\%	0\%	0\%	10\%	6\%	29\%

"BGA" blooms more likely to present "moderate" to "high" risk for toxins and blue green algae

Big three appear to be "spilled paint", "pea soup" and "green streaks"

What about where people swim?

Type	N	FP_TChl	FP_BGChI	NC	
Spilled Paint	72	22824	22604	381.1	
Pea Soup	67	19379	19076	165.9	
Green Streaks	62	3177	3055	131.1	
Green Dots	95	1635	1460	66.3	
Any of last 4	224	8875	8676	129.3	
Bubbling Scums	15	1580	1306	1.7	
(and					
Discolored	5	228	207	48.7	
Duckweed	3	210	59	185.3	$?$
Other	9	392	139	2.0	
Any of last 4	51	600	459	19.9	
No blooms	12	65	42	23.1	

Wow! HUGE numbers!

Must be mis ID

Apparent very high total and BGA levels and toxins in all samples

Some "non" BGA image samples show higher total algae (bubbling scums), higher toxins ("other")

NEW YORK
SAPIE Of
OPFORTUNITY

But sometimes a few samples skew results

Type	\%FP		\%FP	\%FP	\%FP	\%MC>4	\%MC>20
	N	TChl >50	BG >30	BG >20	BG>15		
Spilled Paint	72	83\%	83\%	83\%	83\%	57\%	46\%
Pea Soup	67	93\%	87\%	90\%	90\%	46\%	30\%
Green Streaks	62	71\%	74\%	76\%	77\%	40\%	27\%
Green Dots	95	46\%	43\%	44\%	45\%	22\%	12\%
Any of last 4	224	64\%	62\%	64\%	65\%	34\%	22\%
Bubbling Scums	15	40\%	20\%	27\%	40\%	7\%	0\%
Discolored	5	40\%	40\%	40\%	40\%	40\%	20\%
Duckweed	3	100\%	67\%	67\%	67\%	67\%	33\%
Other	9	44\%	33\%	33\%	44\%	11\%	0\%
Any of last 4	51	47\%	35\%	39\%	45\%	20\%	8\%
No blooms	12	17\%	8\%	8\%	8\%	42\%	33\%

"Spilled paint blooms are most toxic; pea soup have highest BGA

Some "non BGA" blooms might still have BGA and toxins

Change from month to month

Month	FP_TChl	FP_BGChl	$\begin{gathered} \% F P \\ \text { TChl }>50 \end{gathered}$	$\begin{gathered} \% F P \\ B G>30 \end{gathered}$	$\begin{gathered} \text { \%FP BG } \\ >20 \end{gathered}$	$\begin{gathered} \text { \%FP } \\ \text { BG>15 } \end{gathered}$	\%MC>4	\%MC>20	N
May	9	3	0\%	4\%	8\%	12\%	0\%	0\%	26
June	4	1	1\%	1\%	2\%	3\%	0\%	0\%	414
July	10	5	3\%	4\%	6\%	8\%	1\%	0\%	661
Aug	14	4	3\%	4\%	8\%	9\%	2\%	1\%	688
Sept	18	10	3\%	4\%	6\%	7\%	2\%	0\%	575
Oct	35	31	3\%	4\%	8\%	10\%	1\%	0\%	107
			\%FP	\%FP	\%FP BG	\%FP			
Month	FP_TChl	FP_BGChl	TChl >50	BG >30	>20	BG>15	\%MC>4	\%MC>20	N
May	21	15	4\%	4\%	4\%	4\%	6\%	6\%	57
June	1259	1190	31\%	28\%	30\%	31\%	9\%	6\%	137
July	1974	1724	44\%	37\%	39\%	43\%	21\%	13\%	234
Aug	4199	4016	54\%	55\%	60\%	62\%	28\%	16\%	299
Sept	10480	10317	56\%	59\%	64\%	68\%	39\%	28\%	197
Oct	6538	6189	48\%	46\%	48\%	49\%	40\%	21\%	71

Shoreline bloom

2014 Open Water Algae Types, CSLAP Lakes

Open water:

Early: Green algae and diatoms

Late: Blue green algae and other species

Shoreline blooms:
Increasing BGA levels into late summer with decreasing green algae and diatoms

2014 Shoreline Bloom Algae Types, CSLAP Lakes

Change from year to year- all CSLAP lakes

Less Algae and Fewer blooms in 2014?

	Open	AvgTChl	\%TChl>50	AvgBG	\%BG>30	AvgMC	\%MC>4
Year	N	Open	Open	Open	Open	Open	Open
2014	902	7.8	2%	3.7	3%	0.2	0%
2013	905	16.9	3%	7.4	5%	0.5	2%
2012	650	15.1	2%	9.4	2%	0.5	2%

Year	Shore N	AvgTChl Shore	\%TChl>50 Shore	AvgBG Shore	$\% B G>30$ Shore	AvgMC Shore	\%MC>4 Shore
2014	460	5492	45\%	5370	44\%	35	13\%
2013	473	3471	43\%	3166	43\%	144	29\%
2012	79	3482	72\%	3378	59\%	96	35\%

Change from year to year- index lakes

Year	Open	N	AvgTChl	OpTChl>50	AvgBG Open	\%BG Open	AvgMC Open	OMC >4 Open
2014	151	6.2	1%	4.0	3%	0.2	0%	
2013	177	7.0	3%	3.3	4%	0.6	3%	
2012	137	6.6	1%	4.9	5%	0.6	4%	

Year	Shore	AvgTChIS		\%TChl>50	AvgBG		
hore	Shore	Shore	\%BG>30 Shore	AvgMC Shore	\%MC >4 Shore		
2014	168	5167	35%	5146.101	39%	2.5	4%
2013	134	1553	45%	1457.901	45%	59.5	47%
2012	14	2812	57%	2662.114	50%	458.6	43%

Which toxins? (2014)

Hepatotoxins

Neurotoxins

Anatoxin-a	N	$\%$ Detectable	$\%>1 \mathrm{ug} / \mathrm{I}$	$\%>4 \mathrm{ug} / \mathrm{I}$
Open	924	1%	0%	0%
Shore	447	6%	1%	0%

Can we detect HABs early?

Fluoroprobe used to identify appx. algal density
Data received by DEC within 24 hrs receipt
Fluoroprobe underestimates algae density near "bloom" range FP of $30 \mathrm{ug} / \mathrm{l}$ in open water may underestimate "blooms"

What might be better....

10-15 ug/l BG chlorophyll and $30 \mathrm{ug} / \mathrm{l}$ total chlorophyll measured thru fluoroprobe might be better measure of extracted chlorophyll $=30$ ug/l BG chlorophyll and 50 ug/l total chlorophyll, respectively

What do we still have to learn?

Why?

School for the Mechanically Declined

Why why?

Open water blooms with "moderate" toxin risk generally limited to chlorophyll > 15

Likelihood of shoreline blooms increases 5x as chlorophyll increases from 5 to $20 \mathrm{ug} / \mathrm{l}$

Why are blooms occurring in this (0-15 ug/l) range?

[^0]:

 (1)
 (1)

