

Scott Kishbaugh
 CSLAP Director, NYSDEC

Department of Environmental Conservation
Been there, done that (2010 FOLA presentation) 19,000 Samples Later:
What Have We Learned Through CSLAP?

Scott A Kishbaugh, PE
NYSDEC Division of Water
sakishba@gw.dec.state.ny.us
518-402-8282

What I said then....

- (Nothing useful)
- Eutrophication = Recreational Impacts (use of CSLAP data in evaluating recreational impacts from algae)
- Eyes on the ground = early detection (how CSLAP = iMap, HABs findings)
- Water quality database and trends (CSLAP data to evaluate statewide conditions and trends)
- What about specific lakes?

What we say to dogs

What they hear

Did I at

 least show anything interesting?

State Water Quality Database

CSLAP is primary state lake water quality database in central NY, perimeter of Adirondacks

CSLAP is primary long-term state water quality database
>90\% of NYS lakes sampled more than 5 continuous years sampled through CSLAP

Wet Weather = productivity

Dry Weather = color

Percentage of CSLAP Lakes with Higher or Lower Readings in Wet and Dry Years

	Dry Years	Wet Years
Higher TP	15%	30%
Lower TP	31%	20%

	Dry Years	Wet Years
Higher Color	2%	39%
Lower Color	67%	16%

Long Term Changes? (as of 2008)

Sampling Parameter	\% CSLAP Lakes Increasing	\% CSLAP Lakes Decreasing	\% CSLAP Lakes No Significant Change
Water clarity	0	<1	>99
Total phosphorus	3	0	98
Nitrate	2	5	93
pH	5	8	87
Conductivity	9	8	83
Color	14	2	84
Water temperature	7	6	87
Perceived WQ	$\mathbf{3}$	8	89
Perceived Plant Coverage	9	6	84
Perceived Recreation	3	9	88

Rephrasing the question..... (2014 CSLAP report = "What Did We Learn")

What is condition in the lake?

Is there anything new that showed up in the testing this year?

How does the condition of our lake this year compare with other lakes in the area?

Are there any trends in our lake's condition?

Should we be concerned about the condition of our lake? Are we close to a tipping point?

Are any actions indicated, based on the trends and this year's results?

What is the condition of the lake?

Can I swim (drink the water, eat the fish, sell my property,)?

Will I (my kids, the dog, the wildlife,...) get sick?

Are there any problems?

Is there something you're not telling me?

Stay CALM (it's all about the assessments)

Consolidated Assessment and Listing Methodology sets rules for assessment waterbodies

Based on protection of designated uses

Sets level of impairment based on
 data relative to WQ standards or other criteria

10\% Rule

Impaired = Average (mean) > Standard, Guidance Value, MCL.. Stressed $=>10 \%$ of samples > Standard, Guidance Value,.. Threatened = Non-numeric or "Administrative" (presence of blooms or AIS species, land use changes,....)

Drinking Water Protection

Relies primarily on DOH data and "decisions" by local operators (administrative)

Lakes data of relevance

- Chlorophyll a (4-6 ug/l)
- Coliform (200, 2400 colonies/ 100ml)
- Enterococci (33 colonies/ 100 ml)
- Ammonia ($20 \mathrm{mg} / \mathrm{l}$) and NOx ($10 \mathrm{mg} / \mathrm{l}$)
- Other PWS indicators (MCLs)

Public Bathing Protection

Table 4 Public Bathing Use Assessment Criteria		
Use Assessment Criteria	WI/PWL Use Impact	
	Severity	Documentation
Frequent/Persistent Conditions Prevent Use - NYS/local Health Department has closed the waterbody to swimming for the entire season, based on water quality (bacteriological) monitoring data.	Precluded	K nown
Periodic/Occasional Conditions Prevent Use - NYS/local Health Department has issued temporary closures of the waterbody to swimming, based on water quality (bacteriological) monitoring data, or - Sufficient stream flow/water level necessary to support swimming uses are artificially restricted.	Impaired	Known
Frequent/Persistent Conditions Discourage Use - Swimming use requires additional measures (eg., aquatic weed harvesting/control). - Monitoring data show exceedence of Impaired criteria* (bacteriological, clarity) more than 10% (suspected) or 25% (known) of time.	Impaired	Known or Suspected
Occasional (Other) Conditions Discourage Use - Recreafion uses are assessed as Impaired/Precluded ${ }^{1}$, or - Monitoring data show exceedence of Stressed criteria* (clarity) more than 10% (suspected) or 25% (known) of time.	Stressed	$\begin{gathered}\text { Known } \\ \text { or } \\ \text { Suspecled }\end{gathered}$ ${ }^{1}$
Conditions Support Use, but Threats Noted - Monitoring data show exceedence of Threatened criteria" (clarity, phosphorus) more than 10% (suspected) or 25% (known) of time.	Threatened	K nown or Suspected
No Known Impairment or Imminent Threat - NYS/local Health Department has not restricted swimming, and - Swimming use does not require any additional measures, and - Monitoring data does not exceed criteria* ($\gg 10 \%$ of time), and - Recreation uses are not Impaired/Precluded.	No Known Impact	Assessment Level: Monitored
* Monitoring Data Criteria Impaired Stressed Co 1 iform, Total (geometric mean) 2,400 - Coliform, Fecal (geometric mean) 200 - Entericocci (geometric mean) See below ${ }^{2}$ Clarity (Secchi Disc) 1.2 1.5 Total Phosphorus ${ }^{3,}$ - -	$\begin{gathered} \text { Threaten } \\ - \\ - \\ 2.0 \\ 20 \end{gathered}$	per 100 ml per 100 ml melers $\mu \mathrm{g} / 1$
${ }^{1}$ Public Bathing assessments based on Recreafion use support should be listed as suspected. ${ }^{2}$ For marine waters (excluding tributaries), the enterococci criteria is $35 / 100 \mathrm{ml}$. For Great Lakes waters (excluding tributaries), the enterococcl criteria is $126 / 100 \mathrm{ml}$. ${ }^{3}$ Application of the Total Phosphorus criteria is limited to lakes and ponded waters. ${ }^{4}$ Based on current New York State criteria indicative of elevated nuisance conditions and slight impacts to recreation; other state/national nutrient crileria currently being developed will be incorporated into the Assessment Methodology once adopled.		

Relies primarily on primarily
DOH administrative decisions

Lakes data of relevance

- Water clarity (1.2 meters)
- Coliform (200/2400)
- Enterococci (33 colonies/ 100ml)
- Phosphorus* (20 ug/l)
*not likely in future

Recreational Protection

Table $5 \quad$ Recreation Use Assessment Criteria		
Use Assessment Criteria	WIPWL Use Impact	
	Sererity	Dacaneatation
Frequen U/Pershatent Canditions Prevent Use - NY S.hacal H colh D Dquement has cloxed the watenody bo swimming. bowing or ohcer recretional we for the cutire seases, due bo witce quality cuncems.	Prechadel	Kown
Perladie/ Oceaslanal Conditises Preveat Exe - NY SMocal Healh Deqielment has isuuol tamponary closurex of the waverbaly or portions of the waterbody bo swimsning, bosting or other recreational use due bo water quality concerro, or - Sufficient star am fow/ wiber level necesary bo support rocreational user are irtificially rotrictol.	Impried	Kwwn
Frequen U Pershatent Canditions Dheaurage Use - Recrevional uso of wider requir aldibinal measuro (cg, weel hasevesting (onatul), ar - Public Rathing use are assosol as Ingrairnd/Prachaind, ar - Monitoring dita show execolence of / ampairnd criberis* more than 10% (raxpectad) or 25% (krown) of time, ar than 50% of the time.	Impaied	Kwwn or Saspected ${ }^{4}$
Oceashanal (Other) Conditions Discoarage Ese - Public Rathing uses are assesol as Stremed, or - Monitoring data shows excrelface of Strerxed' criveria* more than 10% (raxpected) or 25% (known) of lime, or - Observitional critcria** inalicaing restrictol recreational user are notol more than 25% of the time.	Surexed	$\begin{gathered} \text { Kwwn } \\ \text { or } \\ \text { owsected } \end{gathered}$
Canditioas Sappart Ese, bat Threabs Noted - Monitoring data shows exccolence of Threatened criteria " more Han 10% (rappecind) or 25% (known) of time. - Observational cribcria** inaliesting revarietal recreational user are notal more than 10% of the time.	Threatenal	Kaven or Suspected ${ }^{4}$
No Keown Impairment or Immineat Threat - Public Bathing uso are not Sirexnd, Impaind, Prochaied and - Recrevion useo nar rotrictol, mor require additional meoures, and - Mamitoring duta doe not exceal crikria*" ($(10 \%$ of time), and - Observitional critaia** for rotricted we mot notol ($>10 \%$ of fime)	No Kaown Impast	A ssosument Level: Monithred
* Moal barieg Data Critteria Tobel Phospharus ${ }^{32}$ Chlomplayi a ${ }^{1}$ * Observaliosal Dala Criteria ${ }^{4}$ Swimminglecreation alightly (or more) rextrictal by pecifically identifiede ${ }^{1}$ Application of he Toul Plosphoms criveria is limitol so hibe anal pooaled w ${ }^{2}$ S Suteimational nutifent criveria bo be developed and incoqposstal into the Asse 2' Obsernational Criberian reless is repposes on CSL.AP Field Obwrration Far Lake motex prosence of algue, Saitahility for Recreation note some impacs/i Recruational Use notos weols and/or elerity problems. ${ }^{4}$ Impaciximpaimens broed on observibional criteria should be linted as nap	Threabened 8 2.0 soc (xleme, ens. ment Mehol Ix. Specifica paimers, an ed	阴 阴 miturx , ex) gy- Condtion of inion of

Primary focus of CSLAP/ LCI/ most lake monitoring programs

Lakes data of relevance

- Water clarity (1.2 meters)
- Chlorophyll a (10 ug/l draft)
- Evidence of persistent and widespread HABs

Aquatic Life Protection

Table $5 \quad$ Recreation Use Assessment Criteria		
Use Assessment Criteria	WI/PWL Use Impact	
	Severity	Dacenemtalios
Frequen UPershitent Canditions Prevent Use - NY SVocal Healh D quartment has cloxed the watetody bo swimming. bowing or oher tecreitional we for the entire seasen, due io witer quality cuncems.	Prechadol	Kown
Perlodic/Occashanal Canditions Preveat Ese - NY SMocal Healh Dquatment has isouol temponary closurex of the walcrboly or portions of the waterhody bo swimning, bowting ar other reareational use due bo witer quality concorne, or antificially rotrictal.	Imqained	Kwwn
Frequen U Pershibtent Canditions Dheaurage Use - Recrevional usor of witer roquire aldibinal measuro (eg, weel hasevting (onntiol), ar - Public Rathing user are assosol as /mpairad/Prochded, ar - Monitoring dita show execolence of $/$ mopaind criberse " more than 10% (rappectad) or 25% (krown) of time, ar - Observalional crintris* indicating rotricted rocrestional uso are moted more than 50% of the time.	Impaied	Known or Suspected ${ }^{4}$
Occashasal (Other) Condithass Dixaorage Use - Public Bathing use are assosel as Sorezed, or - Momitoring data shows excrolance of Sirarned criviaia** mure han 10% (naxpectal) or 25% (known) of lime, ar more than 25% of the time.	Stresed	Kawn or Saspected ${ }^{4}$
Canditions Sappari Ese, bat Thr eabs Noted - Monitoring dati shows exccolence of Threatened criveria " more llan 10% (rapectad) or 25% (known) of time. - Observitional critcria** indicsing restrictol recreational use wre notol more than 10% of the time.	Thratenal	Kavwa or Susprected
No Kava Impal rement or Imminest Threat - Public Rathing uses are not Sinernd, Ingpairnd, Prochaled, and - Recrevion uses nor rotriatol, mor require additional mesures, and - Observitional critori"* for rotristed we mot notol ($>10 \%$ of time)	NoKnown Impast	A ssosument level: Monitored
- Maniltarieg Data Criteria Tobel Phosphorus ${ }^{3,}$ Chlomphalia Clueìy (Sexchi Dase) ${ }^{3}$ ** Ohser valiosal Data Criberia ${ }^{x 4}$ Swimminglecreation slighly (or more) rextafictal by qecifically identified e. Appliention of the Toul Phosphoms criteria is limital to lhed anal poaled w ${ }^{2}$ Subefantional nutrient criteria to be developed and incooponstol into the Asse ' Obnernational Criberia reless to repposes on CSL AP Field Obwrration Far Lake moses prosence of algue, Suitahility for Recreation noter some impact/i Recrational Use noter weols and/or elerity problems. ${ }^{4}$ Impativimpaiments based on obsaverional ariteria shoull be lited as naper	Threaboned -8 2.0 san (alyac, ch ins. ment Medol 1x. Spocifically paimes, and ad	明 限 meters $y, e x e)$ gy- Condition of pixion of

Primary focus of stream/ biomonitoring programs

Lakes data of relevance

- pH (<6.0-6.5 or > 8.5-9.0)
- DO (5-7 mg/l epilimnion, "no reduction of dissolved oxygen from other than natural conditions" hypolimnion)
- Invasives (animals/plants)

Other evaluation

Egrly microscope
Other designated uses evaluated solely with non DOW data

- Fish consumption (some use of tissues, HABs, other DOW data, but not for 303d listing)
- Shellfish consumption
- "Condition" (habitat, aesthetics) evaluated with DOW data
- Not designated uses
- Limited applicability for 303d listings
- Aquatic plant information plugs in here
- Invasives = habitat
- Natives = aesthetics

Great....so what did we learn?

...about potable water

....how does it break out?

Class AA		2014	
	All Years		
Impaired		17%	
Stressed		60%	
Supported		23%	56%
		14%	

Class A	$\underline{2014}$	
All Years		
Impaired	64%	37%
Stressed	13%	48%
Supported	23%	14%

Size-AA and A		Large		Medium	
	Smpaired		36%		27%
		38%			
Stressed		31%		69%	
Supported		33%		4%	
Sun			0%		
N	45		26	13	

Depth-AA and A	Deep	Moderate	Shallow
Impaired	30\%	39\%	29\%
Stressed	34\%	61\%	71\%
Supported	36\%	0\%	0\%
N	44	33	7

Region-AA and A	Downstate	Central	Adirondack	Western
Impaired	88\%	44\%	10\%	50\%
Stressed	13\%	50\%	55\%	50\%
Supported	0\%	6\%	35\%	0\%
N	8	18	40	10

NEW YORK
SIAFE Of
OPPORTUNITY

Department of Environmental Conservation

We don't drink the water....so what did we learn about our lake?

...about recreation

Chlorophyll	$\underline{2014}$		All Years
Impaired	26%		31%
Stressed	21%	20%	
Supported	53%	49%	

Clarity	$\underline{2014}$		All Years
Impaired	12%		11%
Stressed	14%		16%
Supported	74%	74%	

Phosphorus	$\underline{2014}$	
Impaired Years	37%	
Stressed	17%	19%
Supported	46%	47%

Region	Downstate	Central	Adirondack	Western
Impaired	58\%	28\%	6\%	33\%
Stressed	19\%	26\%	19\%	19\%
Supported	23\%	46\%	76\%	48\%
N	62	74	86	21

Is there anything new that showed up in the testing this year?

Open Water Algae

Shoreline HABs

AIS species

Waterbody	Kingdon	Common name -	Saientiffic name
Balsam Pond	Plant	Variable watermilfoil	Myriophyllum heterophyllum
Bowman lake	Plant	Eurasian wattermilfoil	Myntowhylumspicatemin
Chenango Lake	Plant	Eurasian watermilfoil	Myriophyllum spicatum
Chenango Rluer near Greens	Animal	Asian dam	Cowhtowarantuen
Chenango River near Oxford	Animal	Asian clam	Corbicula fluminea
Gulford Lale	Plant	Eurasian watermilfoil	Myytomulum spicaturail
Hunt Pond	Plant	Eurasian watermilfoil	Myriophyllum spicatum
Iackson Prond	Plant	Euraisian wettermilfill	
Long Pond	Plant	Eurasian watermilfoil	Myriophyllum spicatum
Mill Brook Resseruoir	Plant	Eurasian watermilfoil	Myrionhulurw spicatumat
Mud Creek e of Cortland	Animal	Asian clam	Corbicula fluminea
Otaelic River near Pitcher	Animall	Asian dam	Corkhernar fumimex
Plymouth Reservoir	Plant	Eurasian watermilfoil	Myriophyllum spicatum
Warn Lake	Plant	Eurasian wattermilfoil	
Warn Lake	Plant	Curly leafed pondweed	Potamogeton crispus

Seasonal changes in algae type

Near shore

Middle of lake

2014 Shoreline Bloom Algae Types, CSLAP Lakes

AIS distribution in NY- the plants

New info in CSLAP reports re AIS: Useful information

- Nearby lakes with AIS
- Area boat launches (and corresponding AIS species at waterbodies)
- Connection between roadways and AIS waterbodies
- Susceptibility to AIS animals- location, chemistry, connecting waterways
- Other useful information?

How does the condition of our lake this year compare with other lakes in the area?

Water clarity

4.5 meters (4.3 m)
2.3 meters (3.1 m)
3.1 meters (3.2 m)
2.5 meters (2.1 m)

Same question...?

Chlorophyll a
\square $5.6 \mathrm{ug} / \mathrm{l}(4.5 \mathrm{ug} / \mathrm{l})$ $18.5 \mathrm{ug} / \mathrm{l}(11.6 \mathrm{ug} / \mathrm{l})$
$12.9 \mathrm{ug} / \mathrm{l}(11.6 \mathrm{ug} / \mathrm{l})$

14.2 ug/l (18.9 ug/l)

Any more answers?

(Water quality perception)

$\square 2.2$ (2.2)
$\square \quad 2.1$ (2.5)

1 = "crystal clear"; 2 = "not quite crystal clear";
3 = "definite algae greenness"

Are you still talking?

(Total phosphorus)
\square 14 ug/l (11 ug/l)
$\square 40 \mathrm{ug} / \mathrm{l}(26 \mathrm{ug} / \mathrm{l})$
$\square 25 \mathrm{ug} / \mathrm{l}(31 \mathrm{ug} / \mathrm{l})$
$\square 31 \mathrm{ug} / \mathrm{l}(47 \mathrm{ug} / \mathrm{l})$

...enough already....

(Blue green algae, open water)
\square 2.1 ug/l (1.2 ug/l)
$\square 6.5 \mathrm{ug} / \mathrm{l}(7.1 \mathrm{ug} / \mathrm{l})$

2.3 ug/l (3.4 ug/l)
\square $5.8 \mathrm{ug} / \mathrm{l}(7.3 \mathrm{ug} / \mathrm{l})$

1 = "crystal clear"; 2 = "not quite crystal clear"; 3 = "definite algae greenness"

Are there any trends in our lake's condition?

Can look at all data all years all around the state

Why that's not a good idea

- Different number of lakes sampled each year
- Different actual lakes sampled each year
- Sampling starts in May some years and June other years; ends in September some years and October...

Surely there must be some way around that?

Annual phosphorus change 1986-2014

Can look at relative changes each year for each sampled lake

Compare each lake each year to long-term average for that lake

One approach is to identify \% lakes with significant (> 2 SD), slight (> 1 SD) and no change (0-1 SD)

No clear trends Secchi

Lower TP 1990s
(and stop calling me Shirley)

Let's look at a few others

Annual chlorophyll change 1986-2014

2006- ??? (1990, 1996, 2006 very wet)

2007- apparent steady increase in algae

1990ish to 2005apparent decrease in algae levels
1986- too few lakes

1987- likely lab problem

And this one....

Increase 1986early 2000s?

Decrease 20032010

Why very low 2009 and high 2010? Weather?

Problem conducting statewide evaluation with different lakes in each year

And one more....

Variable 19862000

Slight increase 2000-present

Did I mention different lakes each year?
And different numbers of lakes

How do we get around that? Indexing

Evaluate common set of lakes each year

Evaluate over "index" period (summer only)

Compare changes over time

DEC RIBs program = 19 rivers
CSLAP- assigned 41 index lakes in 2006, but had to cut back to 24 lakes due to federal sequestration

And what does that tell us?

Index Lakes- TP and Chlorophyll a

Index Lakes- TP and Chlorophyll a

Index Lakes- Water Clarity and WQ Perception

Index Lakes- Water Clarity and WQ Perception

And what does that tell us?

Index Lakes- Nitrogen Indicators

Index Lakes- Air and Water Temperatures

Index Lakes- pH and Conductivity

And now for something (not really) completely different....

Clarity highest in 2007-2008

No clear trend

[^0]
So have algae levels increased in the last decade?

Algae levels lowest in 20062007

Roughly matches water clarity

No clear trend

[^1]
And l'm sure you're wondering about conductivity...

Index Lakes Conductivity

$■$ Significantly higher \quad Slightly higher \square Normal \square Slightly lower $■$ Significantly lower

Substantially lower conductivity 2006-2009 (esp. 2009) Weather related?
Highly variable over time

Anything else?

Come to the HABs talks tomorrow to learn more

Except for those that want to hear about invasive plants

Or new lake law

Or an intro to lake ecology and lake management

Whatever

[^0]: $■$ Significantly higher \quad Slightly higher \quad Normal \quad Slightly lower $■$ Significantly lower

[^1]: \square Significantly higher \square Slightly higher \square Normal \square Slightly lower \square Significantly lower

