Biological Hield Station

A Primer in Lake Ecology

Based on Chapter One of Diet for a Small Lake

Biological Field Station
SUNY College at Oneonta

Cooperstown, NY

Lake Strata

Summer Stratification

Dashed line: Temp

Solid line: Oxygen

Dotted line: 100% sat.

Summer Stratification

Dashed line: Temp

Solid line: Oxygen

Dotted line: 100% sat.

Thermal Stratification

Spring Overturn

Dashed line: Temp

Solid line: Oxygen

Dotted line: 100% sat.

Fall Overturn

Dashed line: Temp

Solid line: Oxygen

Dotted line: 100% sat.

Winter Stratification

Dashed line: Temp Solid line: Oxygen Dotted line: 100% sat.

Abiotic Components

Producers

Consumers

Primary Consumers... http://cfb.unh.edu/CFBkey/ http://mrskingsbioweb.com http://kingfish.coastal.edu/biology/sgilman

Decomposers

Cultural Eutrophication

- Increased inputs to the Abiotic nutrient sources
 - Agricultural Runoff
 - Urban Runoff
 - Wastewater Treatment
 - Erosion
 - Atmospheric Deposition

Cultural Pollution Abiotic Sources

Producer's Response To Pollution

Consumer's Response to Pollution

Decomposer's Response To Pollution

Limiting factors can change

From Food (nutrients)...

Limiting factors can change

http://blog.mlive.com/chronicle/2008/04/07deadfish.jpg

Impacts of Introduced Exotics

- PRODUCERS: Submerged Macrophytes (i.e., Rooted Aquatic Plants)
- PRIMARY CONSUMERS: Macrobenthic Invertebrates (e.g., Zebra Mussels)
- SECONDARY CONSUMERS: Forage Fish (e.g., Alewives)
- TERTIARY CONSUMERS: Predators (e.g., Walleye)
 - Often a management tool

Producers

Producers

Primary Consumers

Secondary Consumers

Tertiary Consumers

Lake Succession

Water colors

- Clear water appears blue: Uneven absorption of wavelengths
- Impurities and suspended particles affect color
 - Algae
 - Organic matter/tannins
 - Calcium
- Color from shore vs. in a bottle

Properties of water...

- Universal Solvent (solids and gases)
- Density vs. Temperature Properties
- Heat storage
- Erosional forces of fluid and ice

The water cycle CONDENSATION **EVAPORATION** PRECIPITATION SURFACE WATER **ROCK DEEP PERCOLATION GROUND WATER**

At the base of the ecosystem

- Energy Transfer
 - Solar Energy → Photosynthesis → Respiration
 → Respiration...
- Respiration consumes oxygen
 - Consumption may lead to anoxia
 - Extreme diel shifts may occur in shallow productive systems
- pH Effects & Alkalinity
 - Photosynthesis increases pH
 - Respiration decreases pH

Lake Habitats

Cycles of the elements

- Necessary nutrients (carbon, oxygen, nitrogen, phosphorus)
- Limiting nutrients (as a limiting factor) to algae
 - usually P, sometimes N
- Abiotic sources of nutrients
- Producers (Green Plants & Algae Autrophs)
- Consumers (Animals Heterotrophs)
- Decomposers (Bacteria & Fungi Saprotrophs)

Algae Forms

- Phytoplankton (microscopic, free-floating)
- Periphyton (attached to surfaces)
- Epiphyton (attached to macrophytes)
- Filamentous (scum algae)

Images from: Water on the Web

Main Algae Types

- Diatoms (cold conditions)
- Green Algae (high N)
- Blue-Green (N-fixation, high P)

Otsego Lake 2009 Temperature Profiles

January to August

August to December

Otsego Lake 2009 Dissolved Oxygen Profiles

January to August

August to December

Otsego Lake Available Lake Trout Habitat

Otsego Lake 2009 Secchi Transparency

Otsego Lake: Secchi Transparency 1935 – 2009

