

What is GPS?

- Global Positioning System
 - A space-based Satellite Navigation System
 - Provides Location and Time Info Anywhere on or Near the Earth
 - Requires Unobstructed View of at Least 4 Satellites
 - Freely Accessible to Anyone with a GPS Receiver.
 - Calculates location based on time message sent and satellite position
 - Components
 - Antenna (tuned to satellite frequencies)
 - Receiver/processor
 - Highly Stable Clock

History of GPS Development

- GPS Developed from Ground-based Navigation
 - 1940's (WWII); LORAN, etc.
- 1957 Sputnik (USSR); 1st Man-made Satellite
 - US Physicists Monitored Radio Transmissions
 - Used the Doppler Effect to Calculate Orbit
- 1958 Commissioned to Reverse Calculate
 - Use Satellites to Find Ground Location
 - Need 24 Satellites
 - Called *Transit* (1960; Navy)
 - One Position Fix per Hour!
- 1960-Air Force Developed *MOSAIC*
- 1963-Project 57; Concept of GPS Born
- But, Reserved for Military Use

- 1983: Korean Airlines Flight 007
 - Strayed Off Course, into USSR
 - Shot Down by USSR Jet
- President Reagan Passed Directive
 - GPS Freely Available for Civilian Use
 - 1st Satellite launched in 1989; last in 1994
- But, Civilian Signal Intentionally Degraded
 - Selective Availability (SA)
 - Precision: 100 meters (330 ft.)
- 2000; SA Turned Off
 - Precision: 20 meters (66 ft.)
 - Spurred Civilian Use

GPS is Owned and Operated by US Gov't as a Natural Resource (DoD)

GPS Applications

Military

- Navigation (Darkness)
- Target Tracking
- Missile and Projectile Guidance
- Search and Rescue
- Reconnaissance
- Nuclear Detonation Detectors

GPS Applications (con't)

- Civilian
 - Cell Phones

- Navigation (automobiles and smartphones)
- Geotagging (attaching digital objects to location)
- Recreation
 - Geocaching (high tech "hide and seek")
 - Geodashing
 - Waymarking
- Clock Synchronization

GPS Applications (con't)

Commercial

- Air Traffic Control
- GPS Tours
- Cartography
- Surveying (property lines)
- Robotics
- Geofencing (vehicle, pet, person tracking)
- Fleet Tracking (delivery trucks)
- Scientific Applications
 - Lake Management

Handheld GPS Units

- Popular Brands
 - Garmin, TomTom, Bushnell, Magellen
- Wide Price Range
 - \$70.00 to \$700.00
 - Higher Price=more features and better accuracy

• Features:

- Pre-loaded Maps
- Camera
- Storage
- Area Calculations
- Live Traffic Updates

Accuracy

Typical GPS: 15 meters

DGPS: 3 to 5 meters (post-processed)

WAAS: <3 meters

Trimble GeoXH

- High Performance GPS Receiver and Handheld computer
 - Windows Mobile 6.0
 - 1 GB onboard storage + SD Card
 - High Res. VGA display
 - Bluetooth Capabilities
- Built-in antenna
 - Increase accuracy and reception with external antenna mounted on 2.0m pole
- Accuracy
 - Real-time: Sub-meter
 - Post-processing software and corrections: 20 cm

Lake Management with GPS

- Aquatic Plant Mapping
 - Several Case Studies Presented
 - Can be performed by the Weekend Biologist or Volunteers
- Bathymetry Mapping
 - Several Examples Presented
 - Augment with Support Services
- Sediment Depth Mapping
 - Common in Marine Environments
 - Relatively New Innovation in Inland Waters
 - Less Effort; More Data

GPS-Referenced Point Intercept Aquatic Vegetation Survey

Based on Point Intercept Methods developed by Madsen (ACOE, 1999) and Lord (Cornell, 2006) and many others

Abundance	Code	Field Measure	Biomass (dry weight; g/m²)		
No Plants	"Z"	No plants	0.0000		
Trace Plants	"T"	Fingerful (1-2 stems)	0.0001 to 2.000		
Sparse Plants	"S"	Handful (3-6 stems)	2.001 to 140.000		
Medium Plants	"M"	Rakeful (no tines visible)	140.001 to 230.000		
Dense Plants	"D"	Difficult bringing weed mass into boat	230.001 to 450.000+		

Suitable to
Conduct These
Surveys with Hand
Held GPS Units

Case Study: Tuxedo Lake

- Located in Southern New York
- 292 Surface Acres
- Mean Depth 26.4 ft.; Max depth 56 ft.
- Limited littoral zone (<10%)
- Eurasian water milfoil (EWM) discovered by resident in early Oct. 2011
- ABI retained to perform GPS Veg. Survey
- Surveyed 104 points on Oct. 21, 2011
- Survey Goals
 - Confirm ID of EWM
 - Quantify Abundance and Distribution
 - Recommend Plant Control Options

Results

- EWM Identification Confirmed
- Infestation Quantified
 - Limited Distribution
 - Six sites had EWM
 - Trace to Medium Density
 - But other EWM observed along dam shore (in 8-12 ft. water)
- One Trace Site in Southern Cove
 - •~ 1.75 miles from dam
- Based on Survey Data
 - Recommended Hand Pulling
 - Follow-up Survey in 2012
 - Use the Same Locations

Eurasian Water Milfoil (Myriophyllum spicatum) Distribution Tuxedo Lake Aquatic Vegetation Survey October 21, 2011

Case Study: Lake Luzerne

- Located in Adirondack Park
- 111 Surface Acres
- Mean Depth 24 ft.; Max. 52 ft.
- Limited Littoral Zone
- Treated with Renovate in 2010 for Control of EWM
- Southern Cove Curtained to Restrict Herbicide Mov't
- Limited Hand Pulling in 2011
- 2010 Winner of the NYSFOLA Raffle for a Free GPS Veg. Survey!

Eurasian Water Milfoil (*Myriophyllum spicatum*) Distribution Lake Luzerne Aquatic Vegetation Survey September 14, 2011

Survey Goals:

- Efficacy of Cove Treatment
- Effects on Native Plants
- Identify Add. Treatment Areas

Results:

- •38 Different Aquatic Plants Collected
 - 5 different milfoils (3 native)
 - 10 different pondweeds
 - 4 different bladderworts
 - 4 different RTE species
- Good EWM Control in South Cove
 - 2011 Hand pulling
- 2013 West Shore Treatment Zone?

Case Study: Donahue Pond

- Located on Long Island, NY
- 39 Surface Acres
- Mean depth: 4 ft.; Max Depth 5.5 ft.
- 100% Littoral Zone
- Peconic River Sportsman's Club
- Heavily Infested with Fanwort
- Actively Managed Since 2006
 - Numerous Sonar test studies
 - Hand pulling
 - Benthic barriers
 - GPS Veg. Surveys 2005-2011

Survey Goals:

- Assess Efficacy of Treatment Methods
- Track Native Plant Re-colonization
- Determine Future Treatment Methods

Fanwort (Cabomba caroliniana) Distribution Donahue Pond Aquatic Vegetation Survey August 6, 2009

Med./Dense Sites Total Sites 2011 29 (45.3%) 64 Upstream Pon

Fanwort (*Cabomba caroliniana*) Distribution Donahue Pond Aquatic Vegetation Survey September 9, 2010

= No Plants

Trace Plants

LEGEND

Medium Plants

Hackettstown, NJ • Maryland, NY 800-245-2932 • www.alliedbiological.com

Fanwort (*Cabomba caroliniana*) Distribution Donahue Pond Aquatic Vegetation Survey September 8, 2011 - No Plants
 T - Trace Plants
 S - Sparse Plants
 - Medium Plants
 - Dense Plants
 - Dense Plants

Allied Biological

Hackettstown, NJ • Maryland, NY 800-245-2932 • www.alliedbiological.com

Bathymetry Mapping

Bottom Contour Mapping of a Water Body

- Requires a GPS Unit that can Receive Data from a Fathometer
- High Initial Equipment Costs
 - But Not Labor Intensive
- Post Survey Data Handling
 - Variety of Map Outputs

Lake Management Applications:

- Dredging Studies
- Lake Draw Down
- Volume Calculations
- Locate Underwater Structures
- Aquatic Plant Control Options
- Fish Habitat Enhancement

You really are a gadget freak you know: You don't need a GPS receiver to find your way around here...

Case Study: Canoe Brook Reservoir

- Located in Northern New Jersey
- 162.1 Surface Acres
- Mean Depth: 33.1 ft.; Max Depth: 54.2 ft.
- 5,253.4 acre/feet
- Provides Drinking Water to NJ Residents

Project Goals:

- Identify Suitable Boat Access Site
- Update 50+ year old Data
- Accurate Volume Calculations
- Accurately Locate Intake Structures

Results

- Mapped in 2011
- Sub-foot Accuracy
- Adjusted to Full Pool
- 33,356 data points collected
- Output:
 - 1 ft. and 5 foot Contour Maps
 - Intake structures logged
 - •Not Displayed to the Right
- Decided Not to Construct a Boat Launch (to deep)
- Volume Calculations

Water Volume Calculation Chart

Case Study: Lake Dutchess

- Located in Holmes, NY
- 50.1 surface acres
- Mean Depth: 6.3 ft.
- Max Depth: 11.7 ft.
- Increased Algal Production

Project Goals:

- Component of LMP
 - Littoral Zone Determination
 - Feasibility of:
 - Dredging
 - Lake-wide Draw Down
 - Limited Sediment Probing
 - Coves and Inlets

Results

- Conducted in November, 2011
- Sub-foot Accuracy
- 16,132 Data Points Collected
- Adjusted to Full Pool
- Limited Sediment Probing
 - Manual with calibrated pole
 - 44 Sediment Data Points

Distribution of Sediment Depth in Lake Dutchess Locations

Location	# of points	6"	12"	24"	36"	48"	60"
South Shoreline	7	1	2	2	1	1	
Southwest Cove	10	2	4		1	2	1
West Cove	6		1	2	1	2	
North Cove	11		2	7	2		
East Shoreline	4	2	2				
East Cove	4		3	1			
Southeast Cove	3		2	1			

Lake Dutchess
Dutchess County, New York

Sediment Mapping

Traditional Method

- Calibrated Pole
- Manually Probe Sediment
- Labor Intensive
 - More Data=Better Survey
- Accuracy?

Why Sediment Map?

- Dredge Feasibility Study
 - Determine the Volume of Sediment
 - Removal Costs are Based on Volume
- Accurate Location of Underwater Infrastructure

Dual Frequency Fathometer

- Traditional Fathometer Uses One Beam
- Dual Frequency Uses Two
 - High (200 Hz)-Soft Surface
 - Low (24 Hz)-Hard Bottom
 - Difference is Sediment Depth
- Collects Bathymetry Data too
- Increased Accuracy
- Less Labor, but...
 - High Initial Equipment Costs

Case Study: Wildwood Lake

- Located in Northern NJ
- •15.7 surface acres
- Mean Depth: 5.8 ft.
- Max Depth: 12.7 ft.
- Bathymetry Conducted in 2010
- CLP and EWM throughout
- Hydro-raked every 4-5 years
 - Northern Cove (inlet)
 - SW corner (canal inlet/outlet)

Project Goals:

- Identify Future Hydro-rake Sites
- Pilot Test Equipment

Sediment Mapping in Action

Setting the System Up

Dual-Frequency Transducer

Ground Truthing Data

Fathometer Calibration

Functions like an Enormous Secchi Disc

Water and Sediment Depth via Calibrated Pole

Results

- Sediment Thickness
 - Light Color is Low (0 ft.)
 - Darker Color is High (5.1 ft.)
- Measurable Sediment Volume
 - Excludes Large Rocks
 - 37,505 cubic yards
 - Manual Data Points: 54
 - 2.5 hours labor (0.36 points/min.)
 - Automated Data Points: 4,377
 - 2.0 hours labor (24.32 points/min.)

Wildwood Lake

Thank you!

Chris Doyle, CLM
Senior Aquatic Biologist
Allied Biological, Inc.
580 Rockport Road
Hackettstown, NJ 07840
(908) 850-0303
doyle@alliedbiological.com

