Developing a Lake Index of Biotic Integrity

For use with benthic macroinvertebrates in NYS

Outline

- Background on NYS lake assessment
- Project design and methods
- Developing the IBI:
 - Defining lake types
 - Assessing biological component metrics
 - Draft IBI
- Conclusions and Next steps
NYS Lake Water Quality Assessments

- Two main programs
 - Lake Classification and Inventory (LCI)
 - Citizens Statewide Lake Assessment Program (CSLAP)

- Focused on water chemistry, invasive spp., and recreation etc…
NYS Lake Water Quality Assessments

- Lake programs lack a biological assessment component
- NYS has a 43 yr. legacy of stream/river bioassessment
Design and Methods

- Establish sampling and processing methods
- Pilot the implementation of these operating procedures
- Develop a multimetric index of biotic integrity (IBI)

- Beginning in 2008:
 - Sampled approximately 10-12 lakes/yr.
 - Stratified by depth, trophic state and disturbance
Design and Method

- 55 lakes sampled
- 8-12 locations / lake
- Composite benthic sample
 - Single habitat samples
- 300 organism subsample
 - Grided tray sort
 - Lowest taxonomic resolution
- Surface Water Chemistry
 - 1m depth over deep hole
Lake Classification and Chemical Stressors

- BEST – Bio-Env.
 - Selects the variable subset (BEST subset) in one matrix which best matches the multivariate pattern in another matrix.

```
<table>
<thead>
<tr>
<th>k</th>
<th>Best variable combinations (ρw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H₂S    %Org  Sal   ...</td>
</tr>
<tr>
<td></td>
<td>(.62)  (.54) (.53)</td>
</tr>
<tr>
<td>2</td>
<td>H₂S, Sal H₂S, MPD H₂S, %Org Sal, %</td>
</tr>
<tr>
<td></td>
<td>(.76)  (.67) (.65) (.60)</td>
</tr>
<tr>
<td>3</td>
<td>H₂S, Sal, MPD H₂S, Sal, %Org H₂S,</td>
</tr>
<tr>
<td></td>
<td>(.80)  (.75)</td>
</tr>
</tbody>
</table>
```
BEST

- 22 possible chemistry variables
 - Big 4, Nutrients, Color/Transparency, Solutes
 - Screened for redundancy (Ca, Cl, Mg, Na, SO$_4$, Silica)

- 5 variable subsets
 - $r = 0.324$ Cond., **Alkalinity**, Color, Secchi, Ammonium
 - $r = 0.321$ **Alkalinity**, Color, Secchi, Ammonium, Potassium
 - $r = 0.317$ **Alkalinity**, Color, Secchi, Ammonium

Lake Shoreline Disturbance......habitat?!?!
TITAN

- Threshold Indicator Taxa ANalysis (TITAN)
 - Detect changes in taxa distributions along env. Gradients
 - Uses taxonomic data to report stressor changepoint

- TITAN Results:
 - 40 mg/L (Alkalinity as CaCO$_3$)
 - 180 µmhos/cm (Conductance)
Lake Classification (Alkalinity and Landuse)

- High and Low Alkalinity
 - ≥ 40 mg/L CaCO$_3$

- Landuse - % Natural Cover
 - 80% for High Alkalinity
 - 90% for Low Alkalinity

- Specific Conductance
 - ≤ 180 µmhos/cm
Evaluating Metrics by Lake Type

- Literature review of previous lake IBI projects
 - Tested 32 benthic community metrics
 - Tolerance, Functional, Diversity, Abundance etc…..

- Evaluation of metrics followed Barbour et al. (1996)
 - Removed redundant metrics (correlation and scatter plots)
 - Sensitivity based on interquartile range (IQR) overlap
Evaluating Metrics

- Metrics assigned sensitivity values:
 - 0 pts. – Extensive overlap of IQR
 - 1 pt. – One median outside IQR
 - 2 pts. – Both medians outside IQR
 - 3 pts. – No overlap of IQRs

High Alkalinity Metrics

Sensitive Metrics
- COTE
- Density
- Percent Model Affinity (FFG)
- No. Diptera Taxa
- % Chironomidae Indiv.
- % Facultative Indiv.
- % Intolerant Taxa
- % Oligochaeta Indiv.
- Species Richness
- Total No. Indiv. / Species
Low Alkalinity Metrics

- % Tolerant Indiv.
- ETO/ETO+Chilo+Olig.
- No. Diptera Taxa
- Percent Model Affinity (FFG)
- Diversity

* Removed, Curst./Moll. ~ highly correlated with alkalinity
Final Lake Multimetrics
Some new data!
Next Steps

- Develop an extensive independent lake dataset for evaluation and adjustment of IBI’s — *Focus on shoreline disturbance and habitat*

- Begin integration of field, lab, and assessment methods into RIBS cycle and reporting??

- Working with TITAN to develop tolerance value metrics for lake specific macroinvertebrate taxa
Thank You

Alexander J. Smith, PhD
Stream Biomonitoring Unit
425 Jordan Road, Troy, NY 12180
alexander.smith@dec.ny.gov
518-285-5627

Connect with us:
Facebook: www.facebook.com/NYSDEC
Twitter: twitter.com/NYSDEC
Flickr: www.flickr.com/photos/nysdec