Proactive Management of Harmful Algae Blooms

Stephen J. Souza, Ph.D.
Princeton Hydro, LLC
1108 Old York Road
Suite 1, P.O. Box 720
Ringoes, NJ 08551

35th Annual Conference NY Federation of Lake Associations 5 May 2018

5 May 2018 Lake George, NY

Harmful Algae Blooms (HABs)

Notice An algae bloom has made this area potentially unsafe for water contact. Avoid direct contact with visible surface scum.

What is a HAB?

- Severe cyanobacteria (bluegreen algae) bloom.
- Potential to produce very high concentrations of cyanotoxins.
- High concentrations of cyanotoxins can impact the health of humans, pets, and livestock.
- Responsible for closure of beach, shellfish/aquaculture operations heath advisories, and even shut-down of potable water supplies.

The "Bad Guys"

- Microcystis
- Planktothrix
- Anabaena
- Aphanizomenon
- Lyngbya
- Gloeotrichia

Unique Properties of Cyanobacteria

- Prokaryotes... not eukaryotes (such as algae)... lack membrane encased organelles or mitochondria.
- Can photosynthesize. Thus, share properties of both bacteria and algae.
- Produce cyanotoxins as well as taste and odor compounds.

Unique Properties of Cyanobacteria

- Many can fix and assimilate atmospheric nitrogen.
- Biologically adept at assimilating organic phosphorus.
- Many have gas vacuoles...can regulate their position in water column.
- Many can effectively photosynthesize even in low light.

Unique Properties of Cyanobacteria

- Some produce akinetes, vegetative cells resistant to freezing and desiccation that remain in sediment until proper conditions exist for successful germination.
- Some can survive under extreme conditions (e.g. hot springs at 70°C).
- Selectively rejected as food source by filter feeders and zooplankton.

What About Cyanotoxins?

- Cyanotoxins provide competitive advantage.
- Released into environment by both living and dead cyanobacteria.
- Large amounts released when cells physically damaged...e.g., following an algae treatment.
- Extremely stable and decompose slowly.

Not As Simple As It Sounds

- Blooms may happen any time of year and even in low nutrient (mesotrophic) waterbodies.
- Confusion with non-HAB phytoplankton bloom.
- Not all cyanobacteria cause HABs.
- Not all cyanobacteria produce cyanotoxins.
- Cyanotoxin producers may not always produce cyanotoxins even during bloom conditions.

Do I Have a HAB Problem Or Am I About to Have a Problem?

Only definitive way to know is to collect data!

- Phytoplankton assemblage and density
- Chlorophyll a, phycoerythrin and phycocyanin
- In-situ (DO, temperature, pH, Secchi)
- Nutrients (Phosphorus and Nitrogen)
 - Geosmin and MIB
 - Cyanotoxins

PARE [™] - A Strategy For Dealing with HABs

- Predict Forecast bloom using long-term database, keystone parameters, and/or remote sensing techniques.
- Analyze Measure/quantify bloom's severity:
 - Chlorophyll a,
 - Cyanobacteria ID and cell counts
 - Measure concentration of Microcystin
- **React** Implement measures to prevent, control or terminate bloom.
- Educate Share info and educate community.

The Phosphorus Connection

- The amount of available phosphorus is typically the primary driver of lake productivity.
- HABs and nuisance algae blooms strongly linked to amount of available phosphorus.
- Can vary seasonally and can originate from internal and external sources.
- Quantification of phosphorus loading "corner stone" of a successful HAB management program.

Phosphorus Drives Productivity

(Kg/Yr)

81.3

89

65

103.9

54.7

393.9

of Total

20.6%

22.6%

16.5%

26.4%

13.9%

100%

P Loading		
Loading	Source	Load

Stormwater (Watershed-Based)

Atmospheric

Internal regeneration -

Internal regeneration -

Septic

Oxic load

Anoxic load

Total

Phosphorus & Nitrogen Loading

- Stormwater runoff from impervious/pervious areas
- Fertilizers
- Septic systems
- Internal regeneration
 - Decay weeds, algae and biota
 - Release from anoxic sediments
 - Bioturbation/Boating

Successful HAB Management Requires Controlling Nutrients

- External Strategies
 - Source Controls
 - Septic management
 - Fertilizer management and control
 - Shoreline buffers
 - Waterfowl control
 - Stormwater Management / Delivery Control
- Internal Strategies
 - Aeration
 - Nutrient Inactivation

Put Your Lake on a Diet

Stormwater Management

- Reduce
- Infiltrate
- Collect
- Retain

Turn Down The Volume!!!

- Reduce volume of runoff generated from a site.
- Generating less runoff reduces the amount stormwater nutrient load entering lake.

Pro-Active Source Control

Maintain Soil Health

Healthy soils have good porosity...

- Green doesn't mean good.
- The greater the porosity the less runoff...
- Less runoff ... less pollutant loading.

Rainwater Harvesting

Lakeside Buffers

Rain Gardens and Bioretention Systems

Internal Source Management

- Control internal sources of nutrient (Phosphorus)
- Aeration / Destratification
- Nutrient sequestration/ Inactivation
 - Alum, PhosLock. PACI, Iron
- Biomanipulation
- Bioturbation Control

Temperature, DO, Nutrients & Minerals

Princeton Hydro

Aeration's HAB Control Benefits

- Prevent stratification and anoxia limits internal nutrient and metals recycling.
- Actively drive cyanobacteria cells into deeper water.
- Decrease development of dense surface scums.

Aeration

- Two basic options
- Maintain Lake in Stratified State
 - Hypolimnetic aeration (for deep lakes)
- Destratify and Keep In Mixed State
 - Maintain a vertical circulation of water to prevent the onset of stratification and deep-water anoxia

Destratification Aeration Systems

Nutrient Sequestration or Inactivation

- Nutrient inactivators bind specifically with phosphorus making it unavailable for algal or cyanobacteria assimilation
- This limits growth rates and contributes toward a reduction in the magnitude and frequency of blooms
- Less "food" = less algae/cyanobacteria

Phosphorus Sequestering Products

- Alum (aluminum sulfate, sodium aluminate)
- Polyaluminum chloride (PACI)
- PhosLock (Lanthunum)
 - Iron
 - Calcium
 - Certain polymers

Alum

- Aluminum sulfate (alum) binds available phosphorus in water column under both oxic or anoxic conditions.
- Alum creates colloidal aggregates of aluminum hydroxide.
- Phosphates (PO₄) bond with the aluminum hydroxide, making it unavailable for bio-uptake by algae or cyanobacteria.
- Long history of use in lake and reservoir mgmt.

Issues Of Concern

- Baseline water quality hardness, alkalinity, pH, temperature, dissolved oxygen
- Phosphorus sources internal versus external
- Flushing rate (both annually and seasonally)
- Biological Impacts
 - Permitting
 - Longevity

Bench Testing

- Amount of product needed to effectively bind available P.
- Environmentally safe dose.
- Cost-effectiveness.
- Longevity.

Surface Alum Treatment

Dosing outrigger and tubes

Alum stored in pontoons

From Sweetwater Technology

Dispersion of Slurry

From North American Lake Management Society

In-Lake Metered Dosing

Princeton Hydro

Metered Dosing... Conceptual Approach

- Alum introduced in computed, controlled rate.
- Dose based on daily modeled internal and/or external TP load.
- Aeration system used to mix the alum into the water column and promote phosphorus binding.

Other In-Lake **Nutrient Controls**

- Biomanipulation
 - Zooplankton
 - Phytoplankton
 - Fishery
- Floating Wetland Islands
- Weed and algae harvesting

Algaecides

- Standard approach to "dealing" with HAB or nuisance algae bloom.
- Not proactive...reactive...
- Basically two options
 - Copper based
 - Hydrogen Peroxide/Percarbonte based

May Actually Trigger Worse Conditions and Spiraling Repetitive Blooms

Although a tool to control algae blooms and HABs; reliance on CuSO4 alone can actually worsen conditions and prolong bloom:

- Quick, large release of cyanotoxins from decaying cyanobacteria.
- Large release of organic phosphorus.
- Possible precipitous DO drop

In Summary....HABs

- Increasing frequency and severity of HABs.
- Not all algae blooms are HABs.
- Why do they occur?... not fully understood.
- Key to preventing HABs is nutrient management and environmental manipulation.
- Copper sulfate may be a tool...but it is not the solution and can actually worsen conditions and intensify microcystin impacts.

In Summary... PARE

- PARE [™] provides a means of forecasting, assessing and managing HABs.
- Data helps predict onset of bloom and how to best manage factors responsible for blooms.
- With correct data can pre-empt blooms or its lessen severity and duration.
- Roadmap to proactive approach that focuses on nutrient management.

Importance of Education and Outreach

- NYSFOLA
- NALMS.org
- NYSDEC -
 - https://www.dec.ny.gov/chemical/77118.html
 - Harmful Algal Bloom brochure
 - Harmful Algal Bloom Program Guide
- USEPA -
 - http://www2.epa.gov/nutrientpollution/harmful-

Take Advantage of Resources Available
Thru FOLA and NALMS

HABs

Thank You....

Stephen J. Souza, Ph.D.
Princeton Hydro, LLC
1108 Old York Rd
Ringoes NJ 08551
908.237.5660
ssouza@princetonhydro.com