Urban Watershed Renewal in Berry Brook, NH An Examination of Impervious Cover, Stream Restoration, and Ecosystem Resilience

Tom Ballestero, James Houle, Daniel Macadam 4 May 2019 Lake George, NY

Participants at the Beginning:

- City of Dover Staff
- UNH Stormwater Center
- NH Department of Environmental Services
- Environmental Protection Agency

NY Lakes – Part of My Youth

Stormwater

TSS Removal Efficiencies

TP Removal Efficiencies

DIN Removal Efficiencies

Introduction: Bioretention Filters

10

UNHSC 2009 Biannual Report

Site Study: Bioretention (during 1 in. storm)

Site Study: Horne St., Dover, NH

- Watershed area 22 acres
- Subdivision of 1/3 ac. lots
- 38% impervious cover
- CN 60
- Time of concentration
 - Estimated with TR-55 Velocity method: 17 minutes
 - Median observed: 16.5 minutes
- Median observed lag time of 9 minutes
- Filter is 2,100 ft² (140 ft x 15 ft)
- Watershed to bioretention area ratio of 455:1
- Current design rainfall 0.16 inch

Grove St. System

System Diagram

Grove St SGF Drainage Area

GI: Subsurface Gravel Filter

16

Excavation 90% complete

October 7, 2015

Pipe installation

October 8, 2015

Pipe installation between CB#1 & CB#2

Grove St. Native Soil Composition

System Water Level History

20

Grove Street Design Specs

	Grove St SGF	
Parameters		Updated
	Original Values	Values
Drainage Area (acres)	1.44	4.10
Time of Concentration (min)	8.3	13.74
Weighted Curve Number (-)	88	83
Potential Maximum Retention (in)	1.36	2.05
Initial Abstraction (in)	0.27	0.41
% Impervious Area	22%	31%
WQV (Ac-In)	0.36	1.35
WQV (ft ³)	1307	4910
Constructed Storage Volume (ft ³)	1320	1320
% of WQV	101%	27%

Develop Storm Hydrographs

22

WATER CENTER

Performance Analysis using Water Balances

Grove St Performance Summary:

- Cumulative runoff volume reduction of 84%
- Peak flow reduction of 88%
- System never completely filled
 - Maximum water depth of 1.94ft for 1.25-inch rain event on 4/6/2017

Maximum Recorded Flow Rates (ft ³ /min)			
Inflow	82		
Outflow	59		

Cumulative Flow Volumes (ft ³)			
System Inflow Volume	76,695		
System Inflow Volume	12,272		
Infiltration Volume	64,423		

Maintenance Must be Included in the Design Process

Not by the designers, but by the people who are expected to do it or pay for it

Comparison of Pollutant Removal Efficiency Planted vs Grassed Bioretention

Grassed vs Planted Surface Infiltration Rates

Average Infiltration Rates of a Planted (blue) versus Grassed (green) Bioretention Systems Over Time

26

Sectional Media Box Filter Design – version 3

27

Retrofits and Sizing

System	TSS	TN	TP
Conv. Bioretention Average (4)	91%	36%	34%
Durham Bioretention (23% IBSC)	81%	27%	45%
Conv. Subsurface Gravel Wetland	96%	54%	58%
Subsurface Gravel Wetland (10% SGWSC)	75%	23%	53%

Population Growth and Impervious Cover

From 1990 to 2010 (Source: US Census; UNH earth systems research center; PREP; 2010-2040 Projections, UNHSC)

Yes, climate change gives us pause to think, but IC is the 800-pound gorilla

Urban Watershed Renewal through LID and Stream Restoration

Outcome: stream provides aquatic habitat, reduce/eliminate fish passage barriers, restore ecosystem services

Outcome: water quality treatment, volume reduction, and baseflow augmentation

Berry Brook Watershed Overview Impervious Surfaces

Surface	Area (acres)
Total Watershed	185
Pervious	129.4
Asphalt Roads	14.3
Asphalt Driveways	12.4
Compacted Soil	1.0
Parking Lots	7.0
Rooftops	17.6
Other Asphalt	1.7
Other (decks, patios)	1.3
Impervious Total	55.3 (30%)

Source: Adapted from Mapping Impervious Surfaces in the Berry Brook Watershed Complex Systems Research Center, August, 2011

Berry Brook Watershed Renewal Project

Berry Brook Dover, NH

NHDES named Berry Brook to the 303d list of impaired surface waters due to lack of aquatic life support.

Project Comprised of 2 Components

- 1) Stream and wetland restoration (~800ft)
- 2) Stormwater management (24 LID Systems)
 - Treatment of 20.7 IC acres

Berry Brook Watershed area ~185acres Berry Brook stream length is approx. 1.15 miles

Urbanized - high density area (30% EIC)

Berry Brook Watershed –Delineation and Monitoring Locations

Retrofit Locations

40

Crescent Ave DA = 2.97 ac Treated IC = 1.5 ac (28.5%)

Glencrest Ave DA = 6.8ac Treated IC = 2.3 ac (33%)

......

Upper Horne Street DA = 12.2 ac Treated IC = 3.7 ac (31%) Gravel Wetland DA=11.0 ac, Treated IC = 9.55 ac (86.8%)

> Page Ave DA = 5.23 ac, Treated IC = 1.88 ac (36.0%)

Wetland Expansion ~0.6 acres

Roos

Lowell Ave DA = 2.6 ac Treated IC = ac (43%)

Stream Restoration
 ~800 ft, including C, A
 and Aa - channel

Installed Green Stormwater Infrastructure

- 12 bioretention systems,
- 1 tree filter,
- 1 subsurface gravel wetland,
- One-acre of new wetland,
- Day-lighted and restored 1,100 linear feet of stream at the headwaters and restored 500 linear feet of stream at the confluence including two new geomorphically-designed stream crossings
- 3 grass-lined swales
- 2 subsurface gravel filters
- 1 infiltration trench system
 3 innovative filtering catch basin designs

Getting to 10% EIC

Reducing Runoff Volume

Effect of Reducing Watershed CN

CN	Amount of Rain to Generate Runoff (in)	Pn	Pe
74	0.4	68.1%	31.9%
64	0.5	74.4%	25.6%
59	0.6	80.1%	19.9%

Modeled Water Quality

Year	А	Р	CN	TSS (lbs)	TP (lbs)	TN (lbs)
2008-20011	185	56.14	74	92,719	188	2,428
20012-2016	185	42.20	62	27,575	38	1,762
Annual Reductions (lb./yr.)			65,144	149	667	
Simple Method (lb./yr.)			57,223	201	1,127	

Mass Pollutant Export (lbs)

Stream Headwaters

Wetland Outflow to Buried Pipe

Wetlands Followed by Storage Yard

Initial Design

Expanded Wetlands, Shrinking Stream

Design Profile

Planting Pla

STORMWATER CENTER

21 March 2012

Construct Aa Step-Pools

At-Grade Stream Crossing

Created Wetland

	Treatment Period	Start	End	BB EIC (End of TP)
	Pre	June 2011	September 2011	30.0%
/	TP1	October 2011	December 2011	20.0 %
	TP2	January 2012	December 2012	15.8%
	TP3	January 2013	December 2013	14.8%
/	TP4	January 2014	December 2014	14.3%
	TP5	January 2015	December 2015	12.5%
/	TP6	January 2016	December 2016	11.7%

Summer Cooling

LINIVERSITY OF NEW HAMPSHIRE

66

One degree day is a day when the average stream temperature is one degree Fahrenheit above 65 degrees F. This is important as the temperature that a Brook Trout begins to feel heat stress is 65 °F. Therefore a day with an average daily stream temperature of 71 degrees would represent 6 degree days.

Thermal Response

The Rare Chiquita Fish

Funding and Results

Funding: 3 watershed assistance grants and 1 aquatic resource mitigation grant with match from the city.

Berry Brook Project: Getting to 10%		
Cost	\$1,322,000	
Grant Funds	\$793,000	
Match (min estimate)	529,000	
# GI Systems	26	
DCIA Reduced	37 acres	
TSS Reductions (lb./yr.)	57,223	
TP Reductions (lb./yr.)	201	
TN Reductions (Ib./yr.)	1,127	

