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~ Internal Loading in Chautauqua Lake

* What are the important time scales associated with internal loading processes?
* Chronic steady-state release (seasonal)

* Acute pulses (hourly)

* Why does it matter?
* How does the timing of nutrient release effect uptake by phytoplankton and other

primary producers?



* Chautauqua Lake

Image Source- NYDEC Harmful Algal Bloom Action Plan



Q Chautauqua Lake
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* Data Collection
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~ Internal Loading in the North Basin

Chronic anoxia at depth in
North Basin
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* Internal Loading
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~ Internal Loading in the North Basin
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Internal Loading- pulse events vs chronic release

* Observed episodic increases in conductivity within
hypolimnion 2

SpCond_uScm
260.0

257.5

= 255.0
I 2525
250.0

Depth [m]

* Potential source of increased conductivity
e 1P+ | O2+ reduced products
* Ferrous iron
* Internal loading in “real-time”

* Can we use specific conductance as a tracer to Aug 19 Aug 20 g2t Aug22 Aug 23 ug 24 Aug 25
characterize episodic loading?

* Conductivity 1s a generalized measure
» Ability of water to pass an electrical current
* Not just iron- any dissolved cation/ anion
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Q Internal Waves
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‘ Potential hydrodynamic drivers of pulsed internal loading
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H Wave orbitals
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~ Potential hydrodynamic drivers of pulsed internal loading
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Potential hydrodynamic drivers of pulsed internal loading

What might be driving increases in
conductivity associated with bottom

d . t 9 Table 1 Drivers of pore-water exchange in permeable shelves and associated conservative flushing
SCAIMeEnts ¢ rates for the global shelf, calculated per meter of shoreline (from Santos et al. 2012b)
Flushing rate
Driver (m3 m-1d-1)
Tidal pumping (including pumping through barriers)
“Advective pore-water exchange driven by Wave setup at beach faces 6
f . d . 1 . 1 Groundwater seepage 10
surtace graVIty waves and 1ts €co ogica Density-driven exchange (convection) 10
1mphcat10ns” Shear (Brinkman layer) 100
Precht & Huettel 2003 Bioirrigation (pumping by sedimentary animals) 300
Ripple migration 340
< gave pumping> 380
“Our tracer experiments demonstrated that shallow-water waves can ow-topography interaction 1,000
increase fluid exchange between sandy sediment and overlying water Total 2,150

30-fold, relative to the exchange by molecular diffusion. The main
driving force for this increased exchange are the pressure gradients
generated by the interaction of oscillating boundary flows and
sediment wave ripples.”
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Can we use SpCond as a proxy measurement/ evidence of a nutrient pump and internal loading?

= Thermocline deformation /
Energy driving pumping of pore
water locked in sediments

= Internal loading signal as tracked by
increased conductance
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* Pulsed Internal Loading
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* Pulsed Internal Loading
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~ Pulsed Internal Loading

* Timing of conductivity pulses
are coincident with observed
internal waves

* Timing of conductivity pulses
1s coincident with increases in
multiple analytes, including
Iron and different forms of
phosphorus
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~ Pulsed Internal Loading

* Timing of conductivity pulses
are coincident with observed
internal waves

* Timing of conductivity pulses
1s coincident with increases in
multiple analytes, including
Iron and different forms of
phosphorus
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~ Implications for Phytoplankton Ecology
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Increase in fluorescence vs biomass?

Lippemeier et al. 2021 — 30 min response time in fluorescence signals after nutrient addition
(diatoms and green)

Kruskopf & Flynn 2005 (?)

Harrison & Smith 2012 (??)
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’ Ceratium hirundinella

https://www.inaturalist.org/taxa/345252-Ceratium-hirundinella



~ Ceratium hirundinella

* Dinoflagellate (mixotroph)

Depth [m]

- DVM
* Oxycline 1s barrier to DVM

* Diurnal microstratification just
above oxycline

2022



Q Ceratium hirundinella

* Overwinter cysts
* Mass encystment or sudden lysis late in season
* Associated with turnover

Heaney 1976, Talling 1971, Pollingher 1993 Chapman et al 1982



~ Ceratium hirundinella

* Ceratium as nutrient pump
* Seasonal pump
* Overwinter cysts absorb “luxury” nutrients
from sediments and rise to epi
* 5x increase in P

* Short-term
* DVM allows Ceratium to “come within
reach” of hypolimnetic nutrients — near
thermocline
* Pathway to transfer P from hypolimnion to
epilimnion

Heaney 1976, Talling 1971, Pollingher 1993

Chapman et al 1982
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Depth or VertPos From Surface (Meters)

Temperature Water EXO At Vertical Profiler 001 at Chautauqua Lake (JPCL_VP_001)
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Hypothesized series of events

.

Deoxygenation of hypolimnion leads to internal loading

Pore water pumping/ wash zone drives pulses of nutrient rich water higher into the hypolimnion (conductivity
as proxy)

By mid season nutrient super-rich water nears upper layers of hypolimnion, enough so that Ceratium can
access it

Ceratium DVM acts as daily nutrient pump, bringing nutrients to epilimnion (leaky bodies), driving growth of
other phytoplankton groups

Ceratium maintains dominance until turnover
1. Cold water drives encystment -OR-

2. Competition with other cyanobacteria (toxins) drives them into encystment

Void left by Ceratium allows cyano HABs in North Basin



~ Why does it matter?

* Help explain timing of late season CHABs 1n North Basin of Chautauqua Lake

* Provides predicative capability for HABs in other lakes
* Monttor for episodic internal loading events
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Hypothesized series of events

5. Ceratium maintains dominance until turnover
1. Cold water drives encystment -OR-
2. Competition with other cyanobacteria (toxins) drives them into encystment
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M SPATS.

* Submersible Platform for Automated Timeseries Sampling
* Julia Levan (RPI Arch Student)

* 2023 North Basin and South Basin VP deployments
* Near-Sediment interface sampling

e Other Research Questions?
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* Potential hydrodynamic drivers of pulsed internal loading
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Depth

Vertical velocity matches pattern seen in water temperature and conductivity. Alternate upwelling and downwelling of water
column as a potential driver pumping pore water in benthic sediments
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Taking into account the chemical composition of Ceratium according to Heaney
et al. (1986), the phosphorus incorporated in the cysts which reached the sediments
was calculated. It represented 23 kg particulate phosphorus in 1988, a year when
Ceratium did not form a bloom. The phosphorus incorporated and transported to the
epilimnion by the germinated cysts, together with the phosphorus accumulated by
the vegetative cells by luxury consumption, may reach 115 kg.

In a ““Ceratium year”, the number of cysts produced is much higher (Livingstone,
1979), and the quantity of transported phosphorus by the cysts and accumulated by
the vegetative cells may be 5 or more times higher. Regarding the changes of
concentration of particulate phosphorus in the epilimnion of Lake Sempach in 1975
(increase of about 350 kg Pkm ™2, corresponding to more than 300% of the initial
phosphorus concentration) during the period of the Ceratium bloom in September,
the transport capacity of cysts or vegetative cells should not be neglected. It is worth
mentioning that the decomposition of the dinoflagellate vegetative cells occurs
rapidly in the epilimnion.

The cysts formed in the eﬁilimnion sink down and the following year part of them

return to the upper layers as vegetative cells. Those cells bring up nutrients which they

have stored by “luxury consumption” at the mud-water interface. Thus at-the
beginning of the bloom their development does not depend on the nutrient

concentrations in the epilimnion. The cysts which do not return to the epilimnion are
decomposed and the nutrients are relased to the sediments. Thus the cyst is a carrier

of nutrients in both directions, from down to up, and from up to down.
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* Internal Loading in the North Basin
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Can we use SpCond as a proxy measurement/ evidence of a nutrient pump and internal loading?

Skaneateles VP Bottom Sample SRP

—e— Disturbed
—e— Undisturbed

SRP [ug/L]
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