Managing Water Quality in Rapidly Changing Times: Insights from In-Lake Modeling

David Matthews, Susan O'Donnell, David O'Donnell, Andrew Brainard Upstate Freshwater Institute

Preview

- Modeling and Nine Element Plans
- The model (CE-QUAL-W2)
 - Structure
 - Data requirements
- Model calibration and testing
- Insights from modeling
 - Extreme storm events
 - Phytoplankton community composition
 - Transport of cyanobacteria
 - Climate change
 - Water quality impacts of dreissenid mussels
- Summary

Why Develop Lake and Watershed Models?

- 1. Provide a quantitative basis to evaluate future conditions and management strategies
 - How will the lake respond to changes in nutrient loading?
 - How will climate change affect water quality conditions?
 - What are the impacts of dreissenid mussels?
- 2. Support 9 Element Watershed Management Plans (9EPs)
 - Objective, quantitative tools
 - Connect watershed actions to in-lake water quality
- 3. 9EPs enable funding opportunities
 - Water Quality Improvement Projects (WQIP)

The In-Lake Model – CE-QUAL-W2

- Mechanistic, 2-dimensional (longitudinal/vertical) hydrodynamic and water quality model
- Developed by US Army Corps of Engineers and currently maintained by Portland State University
- Publically available and has been applied to hundreds of rivers, lakes and reservoirs
 - Cayuga, Owasco, Skaneateles, Oneida, Otsego on deck
- Why selected?
 - Well-suited for long, narrow lakes
 - Prior experience (e.g., NYC reservoirs)
 - Public access and acceptable to NYSDEC
 - Dreissenid mussel sub-model developed by UFI

Physical Structure of the Model

- 2-dimensional, laterally averaged
- 24 longitudinal segments Owasco Lake
- 1-meter vertical layers

CE-QUAL-W2 State Variables

Symbol	Description	Units		
Т	temperature	°C		
DO	dissolved oxygen	mg O ₂ /L		
Phytoplankton as algal biomass (user defined groups)				
Alg1	diatoms	μg DW/L		
Alg2	greens	μg DW/L	}	
Alg3	cyanobacteria	μg DW/L		
Organic Matter				
IDOM	labile dissolved organic matter	mg DW/L		
rDOM	refractory dissolved organic matter	mg DW/L		
IPOM	labile particulate organic matter	mg DW/L		
rPOM	refractory particulate organic matter	mg DW/L		
Nitrogen				
tNH ₃	total ammonia	μg N/L		
NO _x	nitrate + nitrite	μg N/L		
IDON	labile dissolve organic nitrogen	μg N/L	ļ	
rDON	refractory dissolve organic nitrogen	μg N/L		
IPON	labile particulate organic nitrogen	μg N/L		
rPON	refractory particulate organic nitrogen	μg N/L		
Phosphorus				
SRP	soluble reactive phosphorus	μg P/L		
IDOP	labile dissolve organic phosphorus	μg P/L		
rDOP	refractory dissolve organic phosphorus	μg P/L	Ì	
IPOP	labile particulate organic phosphorus	μg P/L		
rPOP	refractory particulate organic phosphorus	μg P/L		
Silica				
DRSi	dissolved reactive silica	mg Si/L		
Psi	particulate biogenic silica	mg Si/L		
Zooplankton as zooplankton biomass (user defined groups)				
Z001	herbivores	μg DW/L		

State variables = modeled parameters

Sum to chlorophyll-a

Sum to Total Nitrogen

Sum to Total Phosphorus

measured, calculated, or literature values

Data Requirements

- Detailed bathymetry
- Water surface elevation
- Sub-watershed areas
- Measured inflows, outflows, loads
- Meteorology air temperature, wind speed and direction, dew point, cloud cover, solar radiation, precipitation
- Initial concentrations for all state variables

Comparing Empirical/Statistical and Mechanistic Models

Chl-a = a(TP) + b100 $R^2 = 0.84$ n=168 10 **CSLAP** 1 2012-2017 10 100 TP (µg/L)

Chl-a (µg/L)

Chl-*a* = *f*(W_{TP}; physics, chemistry, biology)

Conceptual Diagram for Phosphorus

Calibration of the Water Quality Model

Theories of Bloom Formation

The shape and orientation of the Finger Lakes makes them especially susceptible to this mechanism of bloom formation

Wind-driven Transport of Cyanobacteria

- Simulations of a <u>floating</u> conservative tracer to represent cyanobacteria
- Southerly wind over six consecutive days

2015-08-17

100%

2015-08-18

100%

 Simulated bloom conditions in Owasco and Skaneateles Lakes

2015-08-16

100%

2015-08-15

100%

Impacts of Dreissenid Mussels on Phytoplankton Community Composition

greens

 Little change in algal biomass – selective feeding caused an important shift in assemblage

With mussels

10 400 **Jepth** 02 Depth (m) 30 300 (J) Bri 200 🚡 40 50 04/01 05/01 06/01 07/01 08/01 10/01 09/01 2018

diatoms

cyanobacteria

time

Without mussels

тЭ

Impact of Climate Change on Surface Water Temperatures

Impact of Climate Change on Phytoplankon Community Composition

Impact of Extreme Storms on Phytoplankton Growth

- Skaneateles Lake
 - big lake
 - small watershed
- water residence time of about 12 years

Management Scenarios – Owasco Lake

- Base Case 2000-2018 (19 years)
- tributary TP loading reduced by 10% (SRP, DOP, PP)
- tributary TP loading reduced by 20% (SRP, DOP, PP)
- tributary TP loading reduced by 30% (SRP, DOP, PP)
- tributary TP loading reduced by 30% (PP)
- tributary TP loading reduced by 30% (SRP, DOP)
- tributary TP loading reduced by 30% (SRP, DOP, PP) and 2°C temperature increase

Management Scenario Results

- The forms of TP targeted matter
 - 30% TP loading reduction via
 PP results in a 3% decrease in
 Chl-a
 - 30% TP loading reduction via
 SRP and DOP results in a 26%
 decrease in Chl-a
- A 2°C increase in air temperature would more than negate cyanobacteria decrease from reduced TP loading

Management Scenario Results

- The forms of TP targeted matter
 - 30% TP loading reduction via
 PP results in a 3% decrease in
 Chl-a
 - 30% TP loading reduction via
 SRP and DOP results in a 26%
 decrease in Chl-a
- A 2°C increase in air temperature would more than negate cyanobacteria decrease from reduced TP loading

Management Scenario Results

- The forms of TP targeted matter
 - 30% TP loading reduction via
 PP results in a 3% decrease in
 Chl-a
 - 30% TP loading reduction via
 SRP and DOP results in a 26%
 decrease in Chl-a
- A 2°C increase in air temperature would more than negate cyanobacteria decrease from reduced TP loading

Summary of Findings

- Water quality models of Owasco and Skaneateles Lakes successfully calibrated, tested, and applied
- Predominant southerly winds during summer contribute to the formation of HABs along northern shorelines
- Selective feeding by dreissenid mussels favors cyanobacteria over other phytoplankton taxa
- Future climate change will favor cyanobacteria and potentially negate the benefits of phosphorus loading reductions
- BMPs intended to address phytoplankton growth and HABs should focus on extreme storm events and dissolved forms of P

Questions?

Simulation of Water Temperature and the Stratification Regime, 2018

Simulation of the Temperature Stratification Regime, 2018

Purpose and Related Efforts

- Develop in-lake models to support development of NYS-funded Nine Element Watershed Management Plans (9EPs)
 - Owasco Lake, Skaneateles Lake, Oneida Lake, Cayuga Lake (TMDL)
 - Otsego Lake, on deck
- Linked in-lake and watershed models are quantitative science-based tools
- Scenario evaluation to guide management

Calibration and Confirmation

- Comparison of model simulations to observations
- Calibration is an iterative process where coefficients are adjusted, within ranges established by the literature, to fit observations
- The model is considered to be confirmed if it can adequately simulate another set of observations without adjusting coefficients
- Ideally, calibration and confirmation data sets represent a wide range of driving conditions (e.g., weather)

Hydrothermal Calibration

Owasco Lake

- Excellent performance in the epilimnion and hypolimnion
- Wide short-term temperature fluctuations at the thermocline caused by internal waves (seiches)
- On-site wind direction was critical
 - Finger Lakes Institute buoy

Hydrothermal Calibration

Longitudinal Patterns in Temperature and Cyanobacteria

Surface water temperature higher at the northern end of the lake

Cyanobacteria more abundant at the northern end of the lake

Probabilistic Approach to Management Runs

 Run model for 19 years (2000-2018) of weather conditions to represent natural variability • Predictions take the form of distributions that reflect uncertainty

Upstate Freshwater Institute

Background

- established in 1981
- not-for-profit [501(c)(3)]
- independent, but close professional ties to Syracuse University and SUNY-ESF

- overseen by a board of directors
- conducts fundamental and applied interdisciplinary research

Upstate Freshwater Institute

Mission

- provide the scientific basis for protection of the freshwater resources of New York State
- advance freshwater research and education

Comparing Mechanistic Models and Empirical/Statistical Models

	Mechanistic Models	Statistical Models
Principle	Theoretical, mass balance	Data-based
Equations	Complex	Simple
Data	Many parameters, few	Many observations, few
	observations	parameters
Implementation	High effort	Low effort
Interpolation	Yes	Yes
Extrapolation	Yes	No
Increase	Yes	Limited
understanding		
of processes		

Vertical Distribution of Total Phosphorus Affected by Tributary Entry Depth

interflows

overflow and interflow following a storm

overflow and interflow

overflow and interflow following a storm

Simulation Date: 2017-07-30

Climate Change Vulnerability of Eutrophication and Algal Blooms in New York

- A NYSERDA project conducted by Hazen and Sawyer and UFI
- Considered climate change impacts on Owasco, Cayuga and Skaneateles Lakes
- Two Representative Concentration Pathways – RCP 4.5 and RCP 8.5
- Three time slices 2020, 2050, 2080

Regulation of Phosphorus Cycling by Dreissenid Mussels

Without mussels, oxic hypolimnion •

With mussels, oxic hypolimnion

- Modeling indicates that
 internal recycle of P in
 Owasco Lake due to
 mussels ≈ external P
 loading
- "Benthic invaders control the P cycle in the world's largest freshwater ecosystem" Li et al. 2021
 - "P availability is now regulated by the dynamics of mussel populations while the role of external inputs of P is suppressed"

Impact of Wind on Water Motion

On-site Wind Data

Syracuse Airport

FLI Buoy – Owasco Lake

Go Fetch!!

Wind fetch length at Skaneateles Lake's northern shore

Confirmation of the Water Quality Model

42