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Why Develop Lake and Watershed Models?

1.

Provide a quantitative basis to evaluate

future conditions and management
strategies
* How will the lake respond to changes in nutrient

loading?

 How will climate change affect water quality

conditions?
What are the impacts of dreissenid mussels?

2. Support 9 Element Watershed

Management Plans (9EPs)
Objective, quantitative tools
Connect watershed actions to in-lake water quality

3. 9EPs enable funding opportunities

Water Quality Improvement Projects (WQIP)
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The In-Lake Model — CE-QUAL-W?2

* Mechanistic, 2-dimensional (longitudinal/vertical)
hydrodynamic and water quality model

 Developed by US Army Corps of Engineers and currently
maintained by Portland State University

* Publically available and has been applied to hundreds of
rivers, lakes and reservoirs

— Cayuga, Owasco, Skaneateles, Oneida, Otsego on deck
 Why selected?

— Well-suited for long, narrow lakes

— Prior experience (e.g., NYC reservoirs)

— Public access and acceptable to NYSDEC

— Dreissenid mussel sub-model developed by UFI
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CE-QUAL-W2 State Variables

temperature °C State variables =

m dissolved oxygen mg O,/L modeled parameters
Phytoplankton as algal biomass (user defined groups)

diatoms ug DW/L
LI greens ug DW/L } Sum to chlorophyll-a
VAEERR cyanobacteria ug DW/L

Organic Matter
ILIIV I |abile dissolved organic matter mg DW/L
NI refractory dissolved organic matter mg DW/L
NIV |abile particulate organic matter mg DW/L

NI refractory particulate organic matter mg DW/L

EOA total ammonia ug N/L )
IO nitrate + nitrite ug N/L

Im- labile dissolve organic nitrogen ug N/L _ Sum to Total
IO refractory dissolve organic nitrogen ug N/L .
NI (abile particulate organic nitrogen ug N/L Nitrogen

NI refractory particulate organic nitrogen ug N/L —
Phosphorus

KT soluble reactive phosphorus ug P/L ]
NJe] I labile dissolve organic phosphorus ug P/L

FOLEIIN refractory dissolve organic phosphorus ug P/L — Sum to Total
W] 1abile particulate organic phosphorus ug P/L Phosphorus
m- refractory particulate organic phosphorus ug P/L —
silica ... |
LS dissolved reactive silica mg Si/L
VA particulate biogenic silica mg Si/L measured, caIcuIated, or
literature values

herbivores ug DW/L




Data
Requirements

Detailed bathymetry

Water surface elevation
Sub-watershed areas

Measured inflows, outflows, loads
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Chl-a (ug/L)

Comparing Empirical/Statistical
and Mechanistic Models
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Conceptual Diagram for Phosphorus
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Calibration of the Water Quality Model
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Theories of Bloom Formation

a) WHO 2021
K‘Aﬂu L3 L8
cellsiL: 107
chl-a pglL: 2
MC pg/L: 1
risk level: low
(o) L i i
e max celis/L: 10"
max chl-a pg/L: 20
v max MC pg/l: 10
risk level: mode rate
(€)
max cells/L:  10°
max chl-a pg/L: 200
max MC pg/L: 100
risk level: high
(d)
“'/A “"/A “'IA max cells/L: 10"
max chl-a pg/L: 200000
max MC pg/L: 100000
risk level: very high

The shape and
orientation of the
Finger Lakes
makes them
especially
susceptible to this
mechanism of
bloom formation
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* Simulations of a floating conservative

Wind-driven
Transport of
Cyanobacteria

tracer to represent cyanobacteria

e Southerly wind over six consecutive days

e Simulated bloom conditions in Owasco

and Skaneateles Lakes

2015-08-15 2015-08-16 2015-08-17 2015-08-18 2015-08-19 2015-08-20
N N N N N N Wind Speed (ms™)
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Impacts of Dreissenid Mussels on
Phytoplankton Community Composition

* Little change in algal biomass — selective feeding caused an
important shift in assemblage

With mussels
diatoms greens cyanobacteria

< Depth

time

Without mussels
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Impact of Climate Change on Surface
Water Temperatures
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Impact of Climate Change on
Phytoplankon Community Composition

2020 2020 2050 2050 2080 2080
RCP45 RCP8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5
700
600 4 .
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Impact of Extreme Storms on
Phytoplankton Growth

Cyanobacteria
(nglL)

u

— W|th storm
— without storm

Apr May Jun Jul Aug Sep Oct Nov
2017

Skaneateles Lake

* biglake

* small watershed
water residence time
of about 12 years



Management Scenarios — Owasco Lake

e Base Case —2000-2018 (19 years)

* tributary TP loading reduced by 10% (SRP, DOP, PP)
* tributary TP loading reduced by 20% (SRP, DOP, PP)
* tributary TP loading reduced by 30% (SRP, DOP, PP)
* tributary TP loading reduced by 30% (PP)
 tributary TP loading reduced by 30% (SRP, DOP)

 tributary TP loading reduced by 30% (SRP, DOP, PP) and
2°C temperature increase



Cyanobacteria
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(ug/L as Chl) TP (ugP/L) Chl-a (ug/L)

% Cyanobaceria

0.5 A
0.4 A
0.3 A
0.2 A
0.1 A
0.0 ~

15 4

10 A

N BN ()] © o
1 1 1 1 I

(a)

(b)

(c)

=

——

Base LT A

10% 4 —1—

20% A

30% P 4 i

30% PP 4 F—1+—

30%+2°C A

Management
Scenario Results

The forms of TP targeted matter

— 30% TP loading reduction via
PP results in a 3% decrease in
Chl-a

— 30% TP loading reduction via
SRP and DOP results in a 26%
decrease in Chl-a

A 2°C increase in air temperature
would more than negate
cyanobacteria decrease from
reduced TP loading
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Cyanobacteria
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Management
Scenario Results

* The forms of TP targeted matter

— 30% TP loading reduction via
PP results in a 3% decrease in
Chl-a

— 30% TP loading reduction via
SRP and DOP results in a 26%
decrease in Chl-a

* A2°Cincrease in air temperature
would more than negate
cyanobacteria decrease from
reduced TP loading
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Summary of Findings

Water quality models of Owasco and Skaneateles Lakes
successfully calibrated, tested, and applied

Predominant southerly winds during summer contribute to the
formation of HABs along northern shorelines

Selective feeding by dreissenid mussels favors cyanobacteria
over other phytoplankton taxa

Future climate change will favor cyanobacteria and potentially
negate the benefits of phosphorus loading reductions

BMPs intended to address phytoplankton growth and HABs
should focus on extreme storm events and dissolved forms of P



Questions?




Simulation of Water Temperature
and the Stratification Regime, 2018

Simulation Date: 2018-04-12
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Simulation of the Temperature
Stratification Regime, 2018

Simulation Date: 2018-04-12
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Phytoplankton
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Simulation Date: 2018-04-12
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Purpose and Related Efforts

* Develop in-lake models to support development
of NYS-funded Nine Element Watershed
Management Plans (9EPs)

— Owasco Lake, Skaneateles Lake, Oneida Lake,
Cayuga Lake (TMDL)

— Otsego Lake, on deck

* Linked in-lake and watershed models are
quantitative science-based tools

* Scenario evaluation to guide management



Calibration and Confirmation

Comparison of model simulations to observations

Calibration is an iterative process where coefficients are
adjusted, within ranges established by the literature, to fit
observations

The model is considered to be confirmed if it can adequately
simulate another set of observations without adjusting
coefficients

Ideally, calibration and confirmation data sets represent a
wide range of driving conditions (e.g., weather)



Temperature (°C)

30

Hydrothermal Calibration
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Owasco Lake

* Excellent performance in the
epilimnion and hypolimnion

 Wide short-term temperature
fluctuations at the
thermocline caused by
internal waves (seiches)

* On-site wind direction was
critical

* Finger Lakes Institute buoy



Hydrothermal Calibration
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Longitudinal Patterns in Temperature
and Cyanobacteria

Surface water temperature higher Cyanobacteria more abundant at

at the northern end of the lake the northern end of the lake
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Probabilistic Approach to Management Runs
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Run model for 19 years (2000-
2018) of weather conditions to
represent natural variability
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Upstate Freshwater Institute

Background

e established in 1981

e not-for-profit [501(c)(3)]

e independent, but close professional ties to
Syracuse University and SUNY-ESF

e overseen by a board
of directors

e conducts fundamental
and applied
interdisciplinary
research




Upstate Freshwater Institute

Mission

e provide the scientific basis
for protection of the
freshwater resources of
New York State

e advance freshwater
research and education




Comparing Mechanistic Models and
Empirical/Statistical Models

_ Mechanistic Models Statistical Models
m Theoretical, mass balance Data-based

m Complex Simple
h Many parameters, few Many observations, few
observations parameters

High effort Low effort

Interpolation Yes Yes
Extrapolation Yes No

Increase
understanding

of processes
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Vertical Distribution of Total Phosphorus
Affected by Tributary Entry Depth
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Climate Change Vulnerability of
Eutrophication and Algal Blooms in New York

RCP Scenarios

—38.5 6.0

A NYSERDA project conducted by
Hazen and Sawyer and UFI
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e Considered climate change
impacts on Owasco, Cayuga and
Skaneateles Lakes
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Regulation of Phosphorus Cycling by
Dreissenid Mussels

Without mussels, oxic hypolimnion ¢ Modeling indicates that
internal recycle of P in
P — Owasco Lake due to
mussels = external P
loading

 “Benthicinvaders control
the P cycle in the world’s
largest freshwater
ecosystem” Li et al. 2021

P — “P availability is now
‘ regulated by the dynamics
of mussel populations
while the role of external
inputs of P is suppressed”

P
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Impact of Wind on Water Motion
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On-site Wind Data

Syracuse Airport
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Go Fetch!!

Wind fetch length at Skaneateles Lake's northern shore
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Confirmation of the Water Quality Model
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