Nutrient reduction as a necessary mean to reduce nuisance and harmful algal blooms in Lake Huntington, NY.

Zachary R. Diehl

Lake Huntington

- 80 acre lake
- Max depth-41ft
- Mean depth-9ft
- Eutrophic
- Dimictic
- Spring fed
- Nutrient sink
- Class B(T)

Work done at Lake Huntington

- State of the lake/interim management plan
- Lake morphometry
- Land use
- Watershed soil septic suitability
- Water quality analysis
- Nutrient sampling
- Aquatic macrophyte survey
- Zooplankton analysis
- Fishery analysis

Stakeholder concerns

- Increased rate of algal blooms, harmful and nuisance in recent years
- Excess nutrients from the watershed
- Safety
- Time of action

Sampling points

In-lake nutrient sampling

Date	Depth (m)	NO3 and NO2 (mg/L)	TN (mg/L)	TP (mg/L)
9/15/2018	0	bd	0.45	0.012
9/15/2018	2	bd	0.45	0.013
9/15/2018	4	bd	1.12	0.022
9/15/2018	6	bd	2.05	0.133
9/15/2018	8	bd	2	0.139
9/15/2018	10	bd	3.28	0.485
9/15/2018	12	bd	3.35	1.080
10/6/2018	0	bd	0.32	0.007
10/6/2018	2	bd	0.48	0.013
10/6/2018	4	bd	0.42	0.010
10/6/2018	6	0.11	1.29	0.006
10/6/2018	8	1.06	0.75	0.013
10/6/2018	10	2.27	2.42	0.023
10/6/2018	12	1.23	2.12	0.146

Watershed nutrient sampling

Date	Site location	NO3 & NO2 (mg/L)	TN (mg/L)	TP (mg/L)
9/15/18	1	0.88	1.37	0.333
9/15/18	12	bd	0.71	0.015
10/20/18	1	0.86	0.91	0.027
10/20/18	2	0.19	0.42	0.166
10/20/18	3	0.18	0.37	0.013
10/20/18	4	0.26	1.13	0.083
10/20/18	5	0.34	0.59	0.052
10/20/18	6	0.36	1.69	13.70
10/20/18	7	0.2	0.57	2.520
10/20/18	8	bd	0.57	3.640
10/20/18	9	bd	0.5	0.060
10/20/18	10	bd	0.74	3.020
10/20/18	11	0.34	0.54	0.055
10/20/18	12	bd	0.27	0.021

Rating	Acres in AOI	Percent of AOI
Very limited	295.3	65.30%
Somewhat limited	76.4	16.90%
Not rated	80.3	17.80%
Totals for AOI	452.1	100.00%

Nuisance algal blooms

- Large filamentous algal blooms
- Recreationally impeding
- Not aesthetically pleasing

Harmful Algal Blooms (HABs)

- Health concerns
- NYSDEC HAB archive page-2014, 2016, 2017
- Implications for biological problems

In-lake management options

- Artificial circulation
- Hypolimnetic aeration
- Hypolimnetic withdrawal
- Algaecides
- Phosphorus inactivation

Artificial circulation

- Delivers compressed air through a pipe into the hypolimnion
- If sufficiently powered, will provide lake wide circulation eliminating temperature stratification
- Could affect algal populations, circulation decreases amount of time spent in photic zone
- Stand alone technique
- Benefits generally delayed
- Relatively low cost

Hypolimnetic aeration

- Adds enough oxygen content to the hypolimnion without adding turbulence to disrupt stratification
- Air lift system brings hypolimnetic waters to the surface aerates and waters sink back to the bottom
- Can also pump pure oxygen into the hypolimnion
- Appropriate in lakes with large hypolimnions
- Used during summer stratification
- Expensive costs

Hypolimnetic withdrawal

- Installation of a pipe or siphon along the bottom of the lake
- Water flows out by gravity to receiving waters
- May need to use an auxiliary pump
- Relatively passive lake management tool
- Biggest disadvantage is potential negative outcomes to receiving waters
- Expensive

In-lake management options

- Algaecides
- Copper sulfate application
- Short term fix
- Popular in NYS
- Quick action and low cost
- Rebound effect

In-lake management options

Phosphorus inactivation

- Precipitate and inactivate
- Binds phosphorus to sediments and removes from water column
- Alum
- Used in NYS in certain aspects
- Other alternatives- phoslock

Nuisance waterfowl

- Stakeholders expressed concerns about Canada geese (*Branta canadensis*) adding nutrients to the lake
- Discourage feeding of geese, including agricultural subsidies
- Limit near lake habitat
- Eliminate easy pathways to the lake
- Plant decorative shrubs or bushes along the shoreline (helps with erosion too)
- Oiling or destroying eggs

Implementation of BMPs

Agricultural BMPs

- Maintenance of a cover crop during winter months
- Filter strip along field edges
- Riparian buffer along stream banks
- Strip cropping
- Grassed waterways or farmed ponds to capture sediments from fields
- Planned, rotational grazing of livestock to help reduce soil erosion

Residential BMPs

- Replacing impermeable surfaces with gravel
- Add trees, shrubs, and mulch to capture and hold rainwater
- Disconnect devices that deliver rainwater to roadside ditches (i.e. gutters)
- Diversion of water to rain gardens so water has time to infiltrate soils

Recommendations moving forward

- Oxygen in the hypolimnion
- Implement BMPs
- Join CSLAP
- Public collaboration
- Sullivan West High School
- Natural state of the lake

Acknowledgements

- Lake Huntington Lake Association (LHLA)
- Clark Foundation
- SUCO BFS

Questions?

