

Bringing New York Dams into Compliance

May 3, 2019 / PF – Dams and Water Pes

Hans Hasnay, PE – Dams and Water Resources Lead Theresa Chu, EIT – Water Resources Engineer

NYSDEC Dam Safety Regulations 6 NYCRR Part 673

Title 6 of the New York Codes, Rules, and Regulations (NYCRR) Part 673: Dam Safety Regulations

Purpose: Administer Environmental Conservation Law Article 15 and regulate dam safety and dam safety programs

wsp

NYSDEC Dam Safety Regulations: Hazard Classification

Class A – Low Hazard Dam

Dam failure is **unlikely** to result in damage to anything more than isolated and unoccupied buildings and undeveloped lands.

Class B – Intermediate Hazard Dam

Dam failure is **likely** to pose the threat of personal injury or result in substantial economic, environmental, or infrastructure loss. Loss of human life is not expected.

Class C – High Hazard Dam

Dam failure is **likely** to result in widespread substantial economic, environmental, or infrastructure loss. Loss of human life is likely.

wsp

NYSDEC Dam Safety Regulations: Requirements

NEW YORK STATE DAM SAFETY REGULATIONS							
		DAM HAZARD CLASSIFICATION					
REQUIREMENT	FREQUENCY	C HIGH	B INTERMEDIATE	A LOW			
Inspection & Maintenance Plan	On-going	~	~	Varies			
Annual Certification	Annually by Jan 31	✓	✓	N/A			
Emergency Action Plan	Annual Review and Update	✓	✓	N/A			
Dam Safety Inspection	2 Years for Class C 4 Years for Class B	✓	✓	N/A			
Engineering Assessment	Every 10 Years	2022	2025	N/A			
\checkmark - indicates requirement that must be fulfilled							

vsp

NYSDEC Dams Inventory

wsp

Engineering Assessment

Required every 10 years for Class B and C dams or if assigned Condition Rating of "unsafe" or "unsound"

- Safety Inspection
- Hydrologic and hydraulic analysis
- Spillway capacity determination
- Stability and structural analysis
- Hazard Classification
- Emergency Action Plan Review

Common Rehabilitation Issues

Insufficient Spillway Capacity

Inadequate Stability Factors of Safety

Insufficient Low Level Outlet Capacity

Dam Condition Issues

Spillway Capacity

Spillway Design Floods for Existing Dams

Hazard Classification	Spillway Design Flood (SDF)		
А	100 year		
В	150% of 100 year		
С	50% of Probable Maximum Flood		

Guidelines for the Design of Dams, 1989, NYSDEC Division of Water

Mount Beacon Dam Spillway (Class C Dam)

Hydrologic Analysis

vsp

Stability Analysis: Gravity Dam Guidelines

Load Case	Load Condition	Minimum Required Factor of Safety	
Case 1	Normal	1.5	
Case 2	lce	1.25	
Case 3	Spillway Design Flood (SDF)	1.25	
Case 4	Seismic	1.0	

vsp

Stability Analysis: Typical Gravity Section

wsp

Stability Analysis: Embankment Dam Guidelines

Loading Condition	Slope to be Analyzed	Minimum Required Factor of Safety
Steady Seepage with Normal Loading Conditions	Downstream	1.5
Steady Seepage with Design Loading Conditions (SDF)	Downstream	1.4
Soismic Loading Conditions	Downstream	1
Seismic Loading Conditions	Upstream	1
Rapid Drawdown with Normal	Downstream	1.1
Loading Conditions	Upstream	1.1
Rapid Drawdown with Design Loading Conditions (SDF)	Downstream	1.3

Stability Analysis: **Embankment Section**

816 m 81

812

808

804

812

808

804

-60 -56 -52 -48 -44 -40 -36 -32 -28 -24 -20

Seismic Upstream

Seismic Downstream

-16 -12 -8 -4 0 4 Distance (ft) 12 16 20 24 28 32 36 40 44 48 52 56

Stability Analysis: Embankment Section

File Name: Glass Lake Dam Slope Normal Pool 827.4 ft RD downstr.gsz, Date: 12/8/2015, Kind: SLOPE/W, Method: Morgenstern-Price

Name: Fill Model Mohn-Coulomb Unit Weight 120 pcf Cohesion: 50 paf Phi 30 ° Phi-B: 0 ° Drawdown Total Cohesion: 1500 paf Drawdown Total Phi 0 ° Name Foundation Soil Model: Mohn-Coulomb Unit Weight 120 pcf Cohesion: 60 paf Phi 30 ° Phi-B: 0 ° Drawdown Total Cohesion: 2000 paf Drawdown Total Phi 0 ° Name Concrete Model Mohn-Coulomb Unit Weight 150 pcf Cohesion: 60 paf Phi 30 ° Phi-B: 0 ° Drawdown Total Cohesion: 2000 paf Drawdown Total Phi 0 ° Name Concrete Model Mohn-Coulomb Unit Weight 150 pcf Cohesion: 60 paf Phi 30 ° Phi-B: 0 ° Drawdown Total Cohesion: 2000 paf Drawdown Total Phi 0 °

Normal Pool - Rapid Drawdown Downstream

File Name: Glass Lake Dam Slope Flood 830.5 ft RD downstr.gsz, Date: 12/21/2015, Kind: SLOPE/W, Method: Morgenstern-Price

Name: Fill Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 50 psf Phi: 30 ° Phi-B: 0 ° Drawdown Total Cohesion: 1500 psf Drawdown Total Phi: 0 ° Phi-B: 0 ° Drawdown Total Cohesion: 2000 psf Drawdown Total Phi: 0 ° Phi: 30 °

Flood (SDF) - Rapid Drawdown Downstream

Low Level Outlet

Mount Beacon Reservoir Dam

Pocket Dam

The low level drain is required to have sufficient capacity to discharge 90% of the storage below the lowest spillway crest within 14 days, assuming no inflow into the reservoir.

Guidelines for the Design of Dams, 1989 NYSDEC Division of Water

General Conditions

Undesirable vegetation

- Deteriorating concrete
- Irregular dam crest
- Potential piping
- Wet embankments

Spillway Capacity: St. Joseph's Lake Dam

Increase capacity by raising non-overflow section and adding auxiliary spillway

Before

After

Spillway Capacity: St. Joseph's Lake Dam -After

Embankment

Spillway

vsp

Spillway Enhancement: Browns Dam

Increase capacity by raising non-overflow section

Before

After

Spillway Enhancement: Pleasure Lake Dam

New emergency spillway

Spillway Enhancement: Lake Louise Marie

New auxiliary spillway

Stability Improvements: St. Joseph's Dam

Concrete Dam - Anchoring

Stability Improvements: Chiselhurst Dam

Concrete Dam – adding mass

vsp

Embankment Dam – flatten downstream slope and seepage blanket

Stability Browns Dam Embankment Remediation

Before

After

Low Level Outlet Repair: St. Joseph's Dam

NSD

Low Level Outlet

Temporary Valve

Low Level Outlet: Lake Louise Marie

New LLO drains 40% of Lake

Pumping to assist and drain remainder

Low Level Outlet Alternative Approach

Installing new LLO's in existing dams can be risky and expensive

- Excavation Risk
- Cofferdam Risk
- Seepage Path in Embankment Dams

Pumping Alternatives

- Pumps as supplement (Lake Louise Marie and Wolf Lake)
- Pumps Only (Pleasure Lake)
- Pump sizes must be reasonable and readily available
- Develop a documented plan, get DEC approval, and include in EAP

Undesirable Vegetation

\\S[]

Issues:

- Difficult to inspect hides problems
- Attracts borrowing rodents
- Tree roots create seepage paths

Deteriorating Concrete

vsp

Potential Piping

\\S[]

(a) Backward erosion piping in the embankment

Swinging Bridge

Financing Strategies

– Bank Loans

- Homeowner Assessment (HOA)
- Project Phasing
- Available Grants through
 - **Consolidated Funding Application (CFA)**

Thank you!

Hans Hasnay, PE Dams & Reservoirs Practice Leader 845-781-0635 Hans.Hasnay@wsp,com Theresa Chu, EIT, ENV SP Water Resources Engineer 914-449-9130 Theresa.Chu@wsp.com

Allan Estivalet, PE, CFM Water & Environment Area Manager 718-473-2427 Allan.Estivalet@wsp.com

wsp.com