Ten Years of Aquatic Vegetation Data Analyzed Through Floristic Quality Index at Lake Waccabuc, NY

> By: Emily Mayer Aquatic Biologist

A Rentokil Steritech Company

Restoring Balance. Enhancing Beauty.

AGENDA

- About Lake Waccabuc
- Historical
 Management at Lake
 Waccabuc
- 3. Point Intercept Methodology
- 4. 2018 Results
- 5. FQI Method + Results

- 6. Summary of Findings
- 7. Future Management

About Lake Waccabuc

- Lake Waccabuc: 138 surface acres
- Connected Three Lake system
 (Lake Waccabuc, Lake Oscaleta and Lake Rippowam)
- Uses: recreational activities (swimming and fishing)
- Management History: hand pulling
- 3LC hired SLM (previously Allied Biological, Inc.) in 2008
- Performed aquatic SAV surveys

A Rentokil Steritech Company

Photo Credit: Waccabuc Landowners Council. (2019). Historic Structures. Retrieved April 26, 2019, from Waccabuc Landowners Council website: https://www.waccabuc.org/lake-waccabuc

Historical Management of Lake Waccabuc

- Brazilian Elodea discovered in 2008
 - Suction Harvesting conducted via DASH (2009)
 - Additional monitoring conducted by residents
- No Brazilian Elodea found since 2010
- Other Invasives found over the years:
 Brittle Naiad, EWM, Water Chestnut, Curly-leaf Pondweed
- Aquatic Plant Surveys Performed Yearly (2008 2018)
 2008, 2016 and 2018 all three basins surveyed
- Zooplankton, phytoplankton collection since 2013 (once a year)
- CSLAP Program D.O. profiles annually

Photo Credit: Google Earth SLM, 2008

Aquatic Plant Surveys (PIM)

Point Intercept Methodology (PIM)

- Developed ACOE, and modified by Cornell University accepted methodology by Regulators (NYSDEC) and Lake Scientists
- ArcGIS to overlay a grid to pre-determine # of GPSreferenced sampling stations
- Utilizing a Trimble GeoXH (sub-foot accuracy)
- Why Conduct a PIM Aquatic Veg. Survey?
- Establish Baseline Plant Community
- Repeatable over Time
- Determine the Efficacy/Suitability of Control Programs
- Determine the Timing and Type of Control
- Identify Emerging Invasive Species (hydrilla, water chestnut)
- Identify RTE Species

Rake Densities

Abundance	Abundance#	Dry Weight (g/m²)	Mean Weight (g/m²)	Description
No Plants ("0")	0	0.0	0.0	Bare Rake
Trace ("T")	1	~0.0001-0.9999	0.5	Finger-full
Sparse ("S")	2	~1.0000-24.9999	13.0	Hand-full
Medium ("M")	3	~25.0000-99.9999	62.5	Covers Rake
Dense ("D")	4	~100.0000-400.0000+	250.0	Difficult to get plant mass into the boat

Photo Credit: SLM

Eurasian Water Milfoil (Myriophyllum spicatum) Distribution

Lake Waccabuc Aquatic Vegetation Survey July 20 & 31, 2018

Total Sample Sites: 120

Trace Plants

= Sparse Plants

Medium Plants = Dense Plants

Percent Distribution

Abundance Sites Percent Total 75 63% Trace 99% 1% Sparse Medium 0% 0%

www.solitudelakemanagement.com

White Water Lily (Nymphaea odorata) Distribution

Lake Waccabuc Aquatic Vegetation Survey July 20 & 31, 2018

Total Sample Sites: 120

Trace Plants

= Sparse Plants

Medium Plants = Dense Plants

Percent Distribution

Abundance Sites Percent Total 52 43% Trace 26 50% 13 25% Sparse 12% Medium 13%

888.480.5253 www.solitudelakemanagement.com

2018 SAV Summary

- Performed on July 20th and 31
- Via Canoe/ prop boat
- ~ 12 hours on the water
- 120 GPS-referenced Stations
- Aquatic Plants at a Glance
- Submersed: 15 (including arrowhead rosette)
- Invasive Species: 2
- Pondweeds: 7
- Native Milfoil: 1
- Algae: 2
- Bladderwort: 1
- Floating-plants: 8

2018 Results

Lake Waccabuc Aquatic Macrophyte Abundance Distribution July 20 & 31, 2018

	Total		Tra	ace	Sparse		Medium		De	nse
	Sites	%	Sites	%	Sites	%	Sites	%	Sites	%
TOTAL SITES	120									
TOTAL SUBMERSED VEGETATION	95	79%	55	58%	23	24%	10	11%	7	7%
EURASIAN WATER MILFOIL	75	63%	74	99%	1	1%	0	0%	0	0%
COONTAIL	53	44%	41	77%	9	17%	1	2%	2	4%
BENTHIC FILAMENTOUS ALGAE	46	38%	27	59%	11	24%	6	13%	2	4%
BASSWEED	39	33%	30	77%	5	13%	1	3%	3	8%
WATER STARGRASS	30	25%	27	90%	3	10%	0	0%	0	0%
LEAFY PONDWEED	21	18%	21	100%	0	0%	0	0%	0	0%
ARROWHEAD (ROSETTE)	12	10%	11	92%	1	8%	0	0%	0	0%
RIBBON-LEAF PONDWEED	8	7%	4	50%	1	13%	3	38%	0	0%
PONDWEED SPECIES	6	5%	6	100%	0	0%	0	0%	0	0%
BRITTLE NAIAD	5	4%	5	100%	0	0%	0	0%	0	0%
COMMON WATERWEED	4	3%	4	100%	0	0%	0	0%	0	0%
CREEPING BLADDERWORT	4	3%	3	75%	1	25%	0	0%	0	0%
DWARF WATER MILFOIL	2	2%	2	100%	0	0%	0	0%	0	0%
TOTAL FLOATING VEGETATION	64	53%	13	20%	21	33%	14	22%	16	25%
WHITE WATER LILY	52	43%	26	50%	13	25%	6	12%	7	13%
WATERSHIELD	36	30%	12	33%	12	33%	9	25%	3	8%
SPATTERDOCK	21	18%	10	48%	7	33%	1	5%	3	14%
COMMON WATERMEAL	11	9%	9	82%	2	18%	0	0%	0	0%
SMALL DUCKWEED	11	9%	10	91%	1	9%	0	0%	0	0%
FLOATING FILAMENTOUS ALGAE	10	8%	8	80%	1	10%	0	0%	1	10%
GREAT DUCKWEED	6	5%	4	67%	2	33%	0	0%	0	0%
BUR-REED	2	2%	1	50%	1	50%	0	0%	0	0%

FQI Method

Floristic Quality Index

Typically used for wetland or terrestrial vegetation.

- Panel of botanists determine the values (Co-efficient of Conservatism)
- 0 = Means invasive
- The higher the number associated with the native plant species the better
- Keys have now been separated into Ecoregions (updated every 5+ years)
- Modified/ supplemented for aquatic use
- What can it tell us?

Photo credits: SLM

Definitions of CC Values

Table 3: Definitions of Co-efficient of Conservatism (CC)							
Co-efficient of	<u>Definitions</u>						
<u>Conservatism</u>							
0	Invasive species; low tolerance						
1-3	Native bordering invasive level or widespread native, not a typical part of plant community						
4 – 6	Native with an intermediate or narrow range of tolerances; May persist under some anthropogenic disturbances.						
7 - 10	Native community with a very narrow range of tolerances, sensitive to anthropogenic disturbances						

Source: (New England Water Interstate Water Pollution Control Commission, 2013)

Example of CC Values

Table 5: Aquatic Macrophyte Co-efficient Conservatism Values									
Aquatic Macrophyte	Scientific Name	Coefficient	Type						
		<u>Conservatism</u>							
		<u>(CC)</u>							
Arrowhead (rosette)	Sagittaria graminea*	7	S						
Bassweed	Potamogeton amplifolius	7	S						
Benthic Filamentous Algae	-	-	Α						
Brazilian Elodea	Egeria densa	0	S						
Brittle Naiad	Najas minor	0	S						
Common Waterweed	Elodea canadensis	4	S						
Coontail	Ceratophyllum demersum	4	S						
Creeping Bladderwort	Utricularia gibba	7	S						
Curly-leaf Pondweed	Potamogeton crispus	0	S						
Dwarf Water Milfoil	Myriophyllum tenellum	8	S						
Eurasian Water Milfoil	Myriophyllum spicatum	0	S						
Flat-stem Pondweed	Potamogeton zosteriformis	6	S						
Floating Filamentous Algae	-	-	Α						
Floating Bur-reed	Sparganium fluctuans*	8	S						
Great Duckweed	Spirodela polyrhiza	3	F						
Spiral fruited Pondweed	Potamogeton spirillus	6	S						

FQI Formula Meanings

Table 4: FQI Met	<u>Table 4: FQI Metrics Definitions:</u>									
<u>Metric</u>	<u>Description</u>	<u>Definition</u>								
Total Mean C	$I = \overline{C}\sqrt{n}$	Mean C value for both native and non- native species								
Native Mean C	Average (C _{Native})	Mean coefficient value of native species								
Total FQI	Average (C _{Native} and C _{Non-Native})	Only native species								
Total N	Number of Native species + Number of Non-native specie	Total number of species								

Source: (Mid-Atlantic Wetland Working Group, 2019)

<u>Table 6: 2008 – 2018 Lake Waccabuc FQI Results</u>											
FQI Results	2008	<u>2010</u>	<u>2011</u>	2012	<u>2013</u>	<u>2014</u>	<u>2015</u>	<u>2016</u>	<u>2017</u>	2018	
Total Avg C:	4.6	4.3	4.6	4.8	4.5	4.2	4.5	4.3	4.8	4.8	
Native Avg C:	5.7	5.4	5.5	5.1	5.2	5.2	5.2	5.1	5.6	5.4	
Total FQI:	18.4	18.7	19.5	20.9	20.1	18.8	20.6	19.2	22.0	20.9	
Native FQI:	20.6	20.9	21.3	21.6	21.4	20.8	22.1	21.0	23.8	22.3	
% C value 0:	18.8	21.1	16.7	5.3	15.0	20.0	14.3	15.0	14.3	10.5	
% C value 1-3:	0.0	5.3	0.0	15.8	10.0	10.0	14.3	15.0	4.8	15.8	
% C value 4-6:	56.3	52.6	61.1	57.9	55.0	50.0	47.6	50.0	52.4	47.4	
% C value 7-10:	25.0	21.1	22.2	21.1	20.0	20.0	23.8	20.0	28.6	26.3	

Table 7: 2008 – 2018 Lake Waccabuc Richness Results										
Richness	2008	<u>2010</u>	<u>2011</u>	2012	<u>2013</u>	2014	<u>2015</u>	<u>2016</u>	2017	2018
Total Richness:	16)	19	18	19	20	20	21	20	21	19
Native Species:	13 (81.3%)	15 (78.9%)	15 (83.3%)	18 (94.7%)	17 (85%)	16 (80%)	18 (85.7%)	17 (85%)	18 (85.7%)	17 (89.5%)
Invasive Species:	3 (18.8%)	4 (21.1%)	3 (16.7%)	1 (5.3%)	3 (15%)	4(20%)	3 (14.3%)	3 (15%)	3 (14.3%)	2 (10.5%)

2008 – 2018 Eurasian Water Milfoil

2008 – 2018 Bass Weed

2008 – 2018 White Water Lily

Summary of Findings

- EWM continues to be dominant SAV
- No Brazilian Elodea (8th yr) and water chestnut (4th yr)
- Two invasive species found in 2018 (EWM and brittle naiad)
- Diversity increased after 2008 consistent (Least 2008 and most in 2017)
- FQI values favorable, natural variation pattern (Wagner, 2017).
- 2012, 2015, and 2017 years with the most native species
- 2012 1 invasive. 2010/2014 4 invasive species

What Does This All Mean? (And For Future Management)

- Stability of the macrophyte community
- Potential problematic species
- Future Management:
- Continue monitoring to build up data
- Lookout for other invasive spp. (hydrilla)
- Monitor nearby lakes that are connected to Waccabuc
- Watershed monitoring / stewardship
- Emergency Rapid Response Plan (ERPP)

Photo credit: SLM, 2018

References

- Borman, et al. 1999. *Through the Looking Glass: A Field Guide to Aquatic Plants.* Wisconsin Lakes Partnership, University of Wisconsin-Extension. Reindl Printing, Inc. Merrill, WI.
- Fassett, Norman C. 1972. A Manual of Aquatic Plants. The University of Wisconsin Press, Milwaukee.
- Freyman, W.A., L.A. Masters, and S. Packard. 2016. The Universal Floristic Quality Assessment (FQA) Calculator: an online tool for ecological assessment and monitoring. *Methods in Ecology and Evolution* 7(3): 380–383
- Lord et al. 2005. *Effective Aquatic Plant Monitoring: Data and Issues from Waneta Lake* Presentation at the Northeast Aquatic Plant Management Society Annual Meeting. Saratoga Springs, NY.
- Madsen, J. D. 1999. *Point and Line Intercept Methods for Aquatic Plant Management*. APCRP Technical Notes Collection (TN APCRP-M1-02), US Army Engineer Research and Development center, Vicksburg, MS. pp 1-16.
- Mid-Atlantic Wetland Working Group. (2019). Floristic Quality Assessment Index (FQAI). Retrieved April 1, 2019, from MAWWG Mid-Atlantic Wetland Working Group website: http://www.mawwg.psu.edu/tools/detail/floristic-quality-assessment-index-fqai
- NatureServe-NEIWPCC Northeast FQA Project. Metzler, K. and D. Faber-Langendoen. Database of coefficients of conservatism for Omernik Level 3 Ecoregion 59
- New England Water Interstate Water Pollution Control Commission. (2013). Northeast Regional Floristic Quality Assessment (FQA). Retrieved April 1, 2019, from New England Water Interstate Water Pollution Control Commission website: http://neiwpcc.org/our-programs/ wetlands-aquatic-species/nebawwg/nqa/
- NYSFOLA. 2009. Diet for a Small Lake: The Expanded Guide to New York State Lake and Watershed Management. New York State Federation of Lake Associations, Inc.
- Tarver, et al. 1979. *Aquatic and Wetland Plants of Florida*. Bureau of Aquatic Plant Research and Control, Florida Department of Natural Resources. Tallahassee, Florida.

Thank you! Questions?

By: Emily Mayer Aquatic Biologist EMayer@solitudelake.com

A Rentokil Steritech Company

Restoring Balance. Enhancing Beauty.

