BLOOMOPTIX

Real-Time HAB Monitoring via Artificial Intelligence Enhanced Digital Microscopy

Igor Mrdjen, PhD

bloomoptix.com

info@bloomoptix.com

BLOOMOPTIX

01 Current Monitoring Approaches

Current monitoring heavily relies on civilian reporting or expensive equipment

Citizen reports can lead to inefficiency & false results

Sample collection and transport to labs introduces lag

Lab backlog & analysis times hinder response times even further

Lab analyses only provide a snapshot & are costly (\$30 -\$120 per sample)

Advancements in Artificial Intelligence and Digital Microscopy

AI-DRIVEN WATER ANALYSIS

BLOOMOPTIX

Automation produces near real-time results

Up To 240x faster

Advancements in Field Microscopy

iolight

• Linked Wirelessly to Cellphone

• Low Cost

Patent Reference: https://patents.google.com/patent/WO2015145098A1/en?oq=iolight

Idea: Computer Vision Implementation

Phase 1: Cell Counting Model and Image Acquisition

Methods: Cell Counting Model

Model correlates manual cell counts and calculated colony volume

Methods: Data Collection & Sampling

Results: Phase 1 Findings

15,000 images collected

The platform is user friendly at all experience levels

Even with human intervention, result turnaround times were rapid (90 mins) and provided meaningful data to our volunteers

Results: Fluoroprobe Comparison

Phase 2: Image Processing and AI Build

Methods: Computer Vision Accuracy Testing

~5,000 images were manually labelled

Following labelling, a subset of 20% of those images were retained for validation testing

Computer Vision accuracy was tested against the manual labels of the subset, with human labels assumed to be "correct"

Results: Computer Vision Accuracy Testing

Results: Label Mismatch Example #1

Results: Label Mismatch Example #2

Conclusions: Phase 2 Findings

Application of AI produced cyanobacterial IDs with >90% accuracy

Accuracy of model can be greatly improved with further QA/QC steps and proper user training

Speed of analysis and repeatability is much greater than manual processing

Phase 3: Upcoming Validation Testing

Phase 3: Upcoming Validation Testing

Objectives:

- 1. Fully validate accuracy of AI-based cyanobacterial ID & counts in as many lakes as possible
- 2. Compare AI-collected data to standard lab data
- 3. Deploy Beta version of App & AI in the hands of users
 - ➢ Geolocation
 - > Weather
 - Secchi Depth
 - Custom measurement for users

Scan QR code to participate!

Acknowledgements:

Pilot Participants NYSFOLA **GREEN LAKE** ASSOCIATION CLEAR LAKE PURE WATER CARING FOR OUR LAKE FOR GENERATIONS FOX-WOLF WAN LAKES AL

Dr. Gregory Boyer Dr. Stephen Shaw Abby Webster Danara Dormaeva Sarah Helen Edwards Sarita Cristina Perez

06 Questions & Discussion

Igor Mrdjen, PhD

216-285-9674

info@bloomoptix.com

Scan QR code to schedule a 1-on-1 Meeting!!!

