CSLAP and Customized Monitoring: How Additional Data is Helping Sleepy Hollow Lake

Chris L. Mikolajczyk, CLM President – NALMS; Senior Manager – Aquatics, Princeton Hydro, LLC Jesse Smith Staff Scientist – Aquatics, Princeton Hydro, LLC Laurel Wolfe Association Manager – Association of Property Owners of Sleepy Hollow Lake, Inc.

Citizens Statewide Lake Assessment Program (CSLAP) – A brief review

- ✓ Began in 1985 by NYSDEC and NYSFOLA
- ✓ Data collected on a biweekly basis by trained volunteers from lake associations
- Discrete water samples analyzed by a certified laboratory
- ✓ All resulting data assessed by NYDEC and NYSFOLA
- ✓ Yearly reports provided to Lake Associations and available online

2016 orthoimagery obtained from the New York State GIS Clearinghouse: gis.ny.gov

Sleepy Hollow Lake

- ✓ Surface area: 325.8 Acres
- ✓ Mean Depth: 7.5 meters (24.5 feet)
- Max. Depth: 21.1 meters (69.1 feet)
- ✓ Volume: Over 9,735,000 m³ (2,572 million gallons)
- Watershed Area: 8,493 acres (13.5 mi²)
- ✓ Flushing Rate: 2.3 times/yr

Sleepy Hollow Lake Monitoring History

- ✓ Water Quality Sampling in 2001-2003 by Greene County Soil and Water Conservation District
- ✓ CSLAP beginning in 2009
- ✓ Fisheries Surveys by Cornell University 1987 2006
- ✓ Watershed Management Plan by Princeton Hydro in 2017
- ✓ Several SAV surveys by pH 2016 Present
- ✓ Comprehensive WQ Sampling by pH 2020 Present
- \checkmark Fisheries Surveys by pH in 2016 and 2021

CSLAP at Sleepy Hollow

- ✓ Bi-monthly Sampling at a single point on the lake June – September
- ✓ Samples from the surface assessed for TP, TDP, TN, TDN, NH3, Chl. a, Calcium, and Chloride
- ✓ Deep samples assessed for TP, TDP, NH3, and Chloride
- Other parameters include Secchi depth (clarity), pH, Conductivity, true color, surface temperature, deep temperature, and Chl. a via flurometer

CSLAP at Sleepy Hollow

✓ Samples assessed for algae; additional samples and cyanotoxin samples collected as needed

✓ Notes regarding submerged aquatic vegetation, invasive species

CSLAP Highlights 2020

- ✓ General downward trend in Surface total Phosphorus and Chl a.
- Upward trend in water clarity, conductivity, and pH.
- ✓ Mesoeutrophic status
- ✓ Lake is usually slightly phosphorus limited
- ✓ High levels of calcium
- \checkmark Susceptible to cyanobacteria blooms

Sleepy Hollow Lake - In-Season Trend Analysis

In Season Water Clarity

NYDEC – CSLAP Report – Sleepy Hollow Lake, 2020

NYDEC – CSLAP Report – Sleepy Hollow Lake, 2020

Princeton Hydro at Sleepy Hollow

- ✓ Monthly May September
- Three monitoring stations South, Mid-Lake, North
- ✓ Full profile In situ monitoring Temp., DO, pH, Conductivity
- ✓ Surface and thermocline samples: TP, SRP, Chl. A, TDP, NO3, NH3, TSS
- ✓ Bottom Samples: TP, SRP, TDP, NO3, NH3, TSS
- ✓ Phytoplankton and Zooplankton samples surface and thermocline – counts for both in 2021

Princeton Hydro at Sleepy Hollow

- ✓ Watershed Management Plan (2016-17)
- ✓ Bathymetry (2016)
- Zone-based rake-toss SAV survey occurs during each water quality survey
- ✓ Fish Surveys (2016, 2021)
- ✓ Fish Habitat Assessment (2021)

2021 Monitoring Notes: WQ

- \checkmark Thermal Stratification detected throughout the season
- \checkmark Lower Secchi depths than in 2020
- Anoxic conditions from July September, spanning a large portion of the water column
- Phosphorus concentrations found to increase over the course of the season
- ✓ Overall higher cyanobacteria counts than 2020; visible bloom occurring in October
- Zooplankton community dominated by rotifers; very few large-bodied herbivores.

Mid-lake 7/27/2020

Mid-lake 7/19/2021

TP vs. SRP

- ✓ TP represents ALL of the phosphorus in the water sample
- SRP represents the amount of phosphorus available for use by algae and cyanobacteria.

TP vs. SRP

7/27/2020			7/19/2021		
Sample Depth	TP (mg/L)	SRP (mg/L)	Sample Depth	TP (mg/L)	SRP (mg/L)
Surface	0.06	ND(<0.002)	Surface	0.02	0.005
Mid	0.08	ND(<0.002)	Mid	0.04	0.016
Deep	0.13	0.002	Deep	0.02	0.002

Midlake TP

Mid-Lake SRP

Chlorophyll *a* and Secchi depths in Sleepy Hollow Lake, 2021

2021 Seasonal average = 14.1 mg/M³ 2021 Season median <u>= 14 mg/M³</u>

NYDEC - CSLAP Report - Sleepy Hollow Lake, 2020

 $1 \mu g/L = 1 mg/m^{3}$

Midlake Chl. a

Cyanobacteria Counts over time

Cyanobacteria Counts over time

2021 Monitoring Notes: Plants and Fish

- Recent concerns involving SAV (Submerged Aquatic Vegetation) treatments and fish habitat
- Eurasian Watermilfoil populations have remained largely controlled in treatment areas
- ✓ Brittle Naiad is still problematic
- ✓ HSI study results suggest that habitat is overall optimal for largemouth bass, fair for smallmouth bass.
- ✓ Fisheries survey suggests issues with alewife populations and lacking early-to-mid-life bass and crappie size class populations.
- Zebra Mussels appear to be in "bust" phase further observation/monitoring may be helpful

SAV: Submerged Aquatic Vegetation

SAV: Submerged Aquatic Vegetation Native Invasive

 ✓ Water Stargrass
✓ Sago Pondweed
✓ Longleaf Pondweed
✓ Tapegrass

✓ Eurasian
Watermilfoil

- ✓ Brittle Naiad
- ✓ CurlyleafPondweed

✓ Water Chestnut

Opinions about SAV may vary!

- Swimmers and boaters typically want them gone
- \checkmark Anglers don't want to see them go
- Every lake community will have its own specific wants and needs, and the solution may be a compromise

Most lake users probably would agree that this isn't favorable

Relative Abundances of SAV in Treatment and Nontreatment sites, 2020

Relative abundances of all SAV in treatment sites from 2020 and non-treatment sites

Habitat Suitability Index

Stuber, R.J., G. Gebhart, and O.E. Maughn. 1982. Habitat suitability index models: Largemouth bass. U.S. Dept. Int. Fish Wildl. Serv. FWS/OBS-82/10.16. 32 pp.

HSI results for Sleepy Hollow Lake, 2021						
Quadrat	Previous SAV Treatment	Largemouth Bass HSI Result	Smallmouth Bass HSI Result			
Northwest	ProcellaCOR [®] , 2020	0.92	0.69			
Northeast	ProcellaCOR [®] , 2020	0.92	0.70			
Southwest	Sonar [®] , 2018	0.92	0.70			
Southeast	None	0.92	0.70			
Full Lake	-	0.86	0.49			

Edwards, E.A., G. Gebhart, and O.E. Maughan. 1983. Habitat suitability information: Smallmouth bass. U.S. Dept. Int., Fish Wildl. Serv. FWS/OBS-82/10.36. 47 pp.

2021 Fisheries Survey

Age Frequencies of Largemouth Bass

PRINCERIOCEFFONDINDRO.000M

Abundance by Species

Mid-Lake Zooplankton

PRINCERIOCEFONDIRDRO.00M

PRINCERIOCEFONDIRDRO.00M

What's Next?

- ✓ Continued WQ and SAV monitoring 2022 growing season
- ✓ Fish Stocking Early Summer 2022
- ✓ Herbicide Treatments by Solitude 2022 growing season
- ✓ Continued assessment of angler data

Other Recommendations

 Fishery Survey 2025-26 –potentially including a diet study?
Habitat Improvement
Zebra Mussel Survey
Community Plant ID Workshop

- Macrophyte/Fishery Management Zones
- ✓ Aeration System

QUESTIONS?

Chris L. Mikolajczyk, CLM Jesse Smith

Princeton Hydro, LLC <u>cmiko@princetonhydro.com</u> jsmith@princetonhydro.com 908-507-3999 (Cell) THANK YOU!