Water Quality and Habitat Impacts Caused by Common Carp (Cyprinus carpio)

Stephen J. Souza, Ph.D.
Clean Waters Consulting, LLC
&
Jesse Smith
Chris Mikolajczyk, CLM
Princeton Hydro, LLC

NYSFOLA 2019 – 36th Annual Conference, Lake George, NY
Thanks To....

- NYSFOLA
- Co-authors for field work and modeling specific to the study of Mill Pond, Southampton, NY
- Mill Pond Association and Deal Lake Commission
Common Carp

- *Cyprinus carpio* non-native, highly invasive fish
- Found in variety of lake and pond ecosystems
Yes...They Can Get Very Large!
How Do Carp Impact Lake Ecosystems?

• Uproot and disturb submerged vegetation.
• Suspend sediments reducing water clarity.
• Resuspension of sediment bound phosphorus.
• Resuspension of organic sediments impact dissolved oxygen concentrations.
• Impact and disrupt feeding, spawning and nursery habitat for various game fish.
Carp Impacts Increase as Densities Increase

- Biomass significantly positively correlated with increased concentrations of...
- Chlorophyll a, Total phosphorus, and Total nitrogen
- Biomass negatively correlated with densities of bushy pondweed (Najas guadalupensis) biomass.

Impacts of Carp

Case Study - Mill Pond, Water Mill (Southampton) NY

- Located in Water Mill, Suffolk County, NY
- 92-acre, kettle hole, freshwater lake
- 850-acre, relatively small watershed, forest (44%), hay and low intensity ag (27%), and low-density development (12%),
- Historically connected to Mecox Bay / Atlantic
Mill Pond

- Categorized by NYSDEC as eutrophic
- Frequently impacted by cyanobacteria blooms...as per NYSDEC data from 2012 – 2018 confirmed blooms with some associated with elevated toxin levels
- Fishery - Largemouth Bass, Chain Pickerel, Bluegill, Pumpkinseeds, Yellow Perch, White Perch, Brown Bullhead...large Carp population
Past Management Efforts

- Solar-powered aeration system 2007
- Phoslock application 2013
- Carp removal project 2012
- Improved stormwater management
- Updated septic design ordinance

Neither aeration nor PhosLock yielded any measurable benefits
Documented HABs

Major Fish Kill 2008
• Identify, quantify and prioritize factors responsible for eutrophication and cyanobacteria blooms,
• Identify the correct combination of in-pond and watershed management actions,
• Develop cost estimates to implement plan and secure any required NYSDEC permits,
• Generate a schedule for plan implementation, and
• Create sampling plan to objectively and quantitatively track WQ improvements and ecological benefits.
Summary of Princeton Hydro 2018 Data

- Lake : Watershed ratio – 23:1
- Moderately flushed system – 62 days
- GW ~ 50% of monthly inflow
- Secchi low – typically > 0.5 m
- Water often brownish color
- No evidence of thermal stratification
- No evidence of “deep water” anoxia
Annualized hydraulic retention time = 62 days
Annualized flushing rate ~ 6 times / year
• TP very high - $\text{Surf}_m = 0.104 \text{ mg/L}$
 $\text{Deep}_m = 0.118 \text{ mg/L}$
• SRP low > 0.004 mg/L
• Anoxic sediment P loading not an issue
• Chlorophyll a very high - Usually > 40 mg/m3
• TSS always elevated, $\text{TSS}_m > 45 \text{ mg/L}$, surf and deep concentrations similar
• Cyano blooms common but cyanotoxin concentrations low (< 4µg/l)
<table>
<thead>
<tr>
<th>Station</th>
<th>DEPTH (meters)</th>
<th>Temp</th>
<th>Specific Cond.</th>
<th>Dissolved Oxygen</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Sample</td>
<td>°C</td>
<td>mS/cm</td>
<td>mg/L</td>
</tr>
<tr>
<td>WQ1</td>
<td>1.50</td>
<td>0.0</td>
<td>13.67</td>
<td>0.193</td>
<td>9.86</td>
</tr>
<tr>
<td>WQ2</td>
<td>2.50</td>
<td>0.0</td>
<td>13.10</td>
<td>0.192</td>
<td>9.82</td>
</tr>
<tr>
<td>WQ3</td>
<td>2.00</td>
<td>0.0</td>
<td>12.94</td>
<td>0.192</td>
<td>9.89</td>
</tr>
<tr>
<td>Station</td>
<td>DEPTH (meters)</td>
<td>Temp</td>
<td>Specific Cond.</td>
<td>Dissolved Oxygen</td>
<td>pH</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>------</td>
<td>----------------</td>
<td>------------------</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>Sample</td>
<td>°C</td>
<td>mS/cm</td>
<td>mg/L</td>
<td>% Sat.</td>
</tr>
<tr>
<td>WQ1</td>
<td>1.4</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface</td>
<td>20.05</td>
<td>0.215</td>
<td>8.44</td>
<td>91.3</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>19.93</td>
<td>0.213</td>
<td>8.01</td>
<td>86.5</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>19.92</td>
<td>0.215</td>
<td>6.37</td>
<td>68.7</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>20.50</td>
<td>0.215</td>
<td>7.62</td>
<td>83.1</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>20.49</td>
<td>0.217</td>
<td>7.61</td>
<td>83.0</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>20.49</td>
<td>0.216</td>
<td>7.66</td>
<td>83.6</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>20.49</td>
<td>0.216</td>
<td>7.52</td>
<td>82.4</td>
</tr>
<tr>
<td>WQ2</td>
<td>2.4</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface</td>
<td>20.47</td>
<td>0.217</td>
<td>7.55</td>
<td>82.4</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>20.50</td>
<td>0.215</td>
<td>7.62</td>
<td>83.1</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>20.49</td>
<td>0.217</td>
<td>7.61</td>
<td>83.0</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>20.49</td>
<td>0.216</td>
<td>7.66</td>
<td>83.6</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>20.49</td>
<td>0.216</td>
<td>7.52</td>
<td>82.4</td>
</tr>
<tr>
<td>WQ3</td>
<td>1.8</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface</td>
<td>20.02</td>
<td>0.215</td>
<td>8.18</td>
<td>88.5</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>20.05</td>
<td>0.215</td>
<td>7.84</td>
<td>84.7</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>20.04</td>
<td>0.216</td>
<td>8.06</td>
<td>87.2</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>20.01</td>
<td>0.215</td>
<td>7.93</td>
<td>85.8</td>
</tr>
<tr>
<td>Date</td>
<td>Chl a (mg/M³)</td>
<td>SRP (mg/L)</td>
<td>TP (mg/L)</td>
<td>TSS (mg/L)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface</td>
<td>Deep</td>
<td>Surface</td>
<td>Deep</td>
<td>Surface</td>
</tr>
<tr>
<td>4/24/2018</td>
<td>44.2</td>
<td>50.1</td>
<td>0.008</td>
<td>0.004</td>
<td>0.09</td>
</tr>
<tr>
<td>6/5/2018</td>
<td>11.3</td>
<td>43.9</td>
<td>0.018</td>
<td>0.003</td>
<td>0.11</td>
</tr>
<tr>
<td>7/16/2018</td>
<td>26.2</td>
<td>36.4</td>
<td>0.003</td>
<td>0.002</td>
<td>0.09</td>
</tr>
<tr>
<td>7/30/2018</td>
<td>51.6</td>
<td>78.1</td>
<td>0.003</td>
<td>0.001</td>
<td>0.11</td>
</tr>
<tr>
<td>8/27/2018</td>
<td>147.4</td>
<td>145.8</td>
<td>0.001</td>
<td>0.001</td>
<td>0.136</td>
</tr>
<tr>
<td>9/24/2018</td>
<td>115.7</td>
<td>63.7</td>
<td>0.0038</td>
<td>0.0021</td>
<td>0.0847</td>
</tr>
</tbody>
</table>

Water Quality Data

Surface and Deep
Deep Chl a, TP, TSS/100

- Chlorophyll mg/m³
- Total Phosphorus (TP)
- Total Suspended Solids (TSS)
Lake Sediment Analysis

- Collected eight (8) sediment cores
- Cores hand-driven to point of refusal (~ 0.5 - 1m)
- Retrieved and examined in field for any evidence of striation, odor, reduced organic content, residual macrophyte/leaf detritus
- Returned to lab for TP and grain size analysis
- Sediments found to be composed mostly of silts/clays, reduced organic material (Org ~30%)
- Sediment TP concs. - 542-1062 mg/kg
What’s role of sediment resuspension on lake eutrophication?
Role of Carp On P Loading

- Mill Pond has a large common carp population
- 2012 over 6,000 lbs removed via netting
- Carp significantly impact water quality
 - Direct nutrient inputs (defecation)
 - Indirect nutrient inputs (bioturbation) and alteration of littoral plant community
- Carp responsible for lack of littoral vegetation and persistent turbidity of the lake
Carp Bioturbation Impacts, Lamarra, 1974
Role of Carp On P Loading

- Computed P Load due to carp bioturbation only
 - Loading rate 5 mg/m2/day
 - Lake bottom area 372,000 m2
 - Loading period 245 days
 - Computed load 455.7 kg/yr
 - Adjusted by 50% to account for settling
- Total P load = 227.85 kg/yr
<table>
<thead>
<tr>
<th>Source</th>
<th>Load (kg/yr)</th>
<th>% Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use (SW Runoff)</td>
<td>200.4</td>
<td>33.75</td>
</tr>
<tr>
<td>Animals</td>
<td>8.6</td>
<td>1.44</td>
</tr>
<tr>
<td>Stream Bank</td>
<td>2.0</td>
<td>0.33</td>
</tr>
<tr>
<td>Groundwater</td>
<td>32.8</td>
<td>5.52</td>
</tr>
<tr>
<td>Septic</td>
<td>67.2</td>
<td>11.32</td>
</tr>
<tr>
<td>Internal - Oxic</td>
<td>26.8</td>
<td>4.43</td>
</tr>
<tr>
<td>Internal – Carp (bioturbation)</td>
<td>227.85</td>
<td>38.39</td>
</tr>
<tr>
<td>Internal - Geese</td>
<td>27.99</td>
<td>4.71</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>
What The Data Is Telling Us

• Lake well mixed, non-stratified and no evidence of anoxia...aeration not needed
• Lake very turbid; due to TSS and Phytoplankton (as per elevated Chl a concentrations)....clarity < 0.5 m
• Mean TP, Chl a concentrations very high, but SRP concentrations moderate
What The Data Is Telling Us

- External P load high 200.4 kg/yr (33.75% of total)
- Septic P load moderate and manageable 67.2kg/yr (11.3% total load)
- Internal sediment P load under oxic conditions is low (<4.43%)
- Carp related P loading is high 227.85 kg/yr (38.39% of total load)
Management Recommendations

- Focus on **manageable sources of P**
- Stormwater runoff
- Septic
- Carp

Target carp removal as primary restoration effort

- No need to aerate lake, not stratified and internal sediment load low
- Data do not support need for nutrient inactivation (alum or alum surrogate treatment of lake sediments)
Carp Removal

- Conduct detailed fishery survey to quantify the amount of carp in lake
- Proposal to conduct baited box net removal program.
- Advocate active removal effort using recreational anglers/bow anglers.
Carp Removal Options

- Gill Nets
- Electroshocking
- Recreational anglers
- Bow anglers
- Baited box nets
Deal Lake Carp Contest

- Held annually
- Cash prizes given for largest and greatest number of carp.
- Fish taken by local commercial fishermen for use as chum and lobster pot bait.
Recreational Fishing

HOW TO PROPERLY CLEAN A CARP

1. Start fillet by slitting the area behind the gills. Take care not to puncture the organs.
2. Run the knife down the backbone. You'll feel the ribs with the tip of the knife.
3. Once you've past the ribs, insert the knife and continue the fillet process toward the tail.
4. Remove the fillet from the rib bones to the belly.
5. Cut off the belly meat and discard the guts or carcass.
6. Place the fillet on a flat surface and slice skin away.
7. Remove mud line from the fillet.
8. Remove red (dark) meat with a v-cut.

Catch of the Day!

Carp!

A healthy way to properly clean and cook carp.

For more helpful fish consumption information go to:

www.FishSmartEatSmartNJ.org
Baited Box Nets

Photo Courtesy of Carp Solutions - http://carpsolutionsmn.com
Advantages of Baited Box Nets

- Fish come to you!
- Highly selective; by-catch minimal.
- Not size selective.
- High catch per unit effort.
- Relatively cost effective.
Proposals in place to conduct during summer of 2019 intensive carp removal effort using baited box nets.

Nets deployed and baited with cracked corn 1 week in advance to entice carp to congregate.

Conduct fish removal over 1 week period and repeat 2-4 weeks later.

Collected fish go to commercial fishermen (bait) or organic farmers (fertilizer).
Summary

• Common carp invasive fish species.
• Proven ability to disrupt fishery and create water quality problems.....perhaps even HABs.
• Negative aspects of control programs
 • Prolific
 • Difficult to catch
 • Public perception
• Baited box nets promising option
Thank You....

Stephen J. Souza, Ph.D.
Clean Waters Consulting, LLC
SJSouza.CWC@gmail.com