Water Quality and Habitat Impacts Caused by Common Carp (Cyprinus carpio)

Stephen J. Souza, Ph.D.

Clean Waters Consulting, LLC

&

Jesse Smith

Chris Mikolajczyk, CLM

Princeton Hydro, LLC

NYSFOLA 2019 – 36th Annual Conference, Lake George, NY

Thanks To....

- NYSFOLA
- Co-authors for field work and modeling specific to the study of Mill Pond, Southampton, NY
- Mill Pond Association and Deal Lake Commission

Common Carp

- Cyprinus carpio non-native, highly invasive fish
- Found in variety of lake and pond ecosystems

Yes...They Can Get Very Large!

CWC

How Do Carp Impact Lake Ecosystems?

- Uproot and disturb submerged vegetation.
- Suspend sediments reducing water clarity.
- Resuspension of sediment bound phosphorus.
- Resuspension of organic sediments impact dissolved oxygen concentrations.
- Impact and disrupt feeding, spawning and nursery habitat for various game fish.

Carp Impacts Increase as Densities Increase

- Biomass significantly positively correlated with increased concentrations of...
 - Chlorophyll a, Total phosphorus, and Total nitrogen
- Biomass <u>negatively</u> correlated with densities of bushy pondweed (Najas guadalupensis) biomass.

M.M. Chumchal, W.H. Nowlin, and R.W. Drenar. 2005. Biomass-dependent effects of common carp on water quality in shallow ponds. Hydrobiologia 545(1):271-277

CWC

M.M. Chumchal, W.H. Nowlin, and R.W. Drenar. 2005.

Case Study - Mill Pond, Water Mill (Southampton) NY

- Located in Water Mill, Suffolk County, NY
- 92-acre, kettle hole, freshwater lake
- 850-acre, relatively small watershed, forest (44%), hay and low intensity ag (27%), and lowdensity development (12%),
- Historically connected to Mecox Bay / Atlantic

Google Earth 2

Water Mill

Necox Bay

Mill Pond

mds.Rd

um 🤗

Photo Source - www.bhsusa.com

Mill Pond

- Categorized by NYSDEC as eutrophic
- Frequently impacted by cyanobacteria blooms...as per NYSDEC data from 2012 – 2018 confirmed blooms with some associated with elevated toxin levels
- Fishery Largemouth Bass, Chain Pickerel, Bluegill, Pumpkinseed, Yellow Perch, White Perch, Brown Bullhead...large Carp population

Past Management Efforts

- Solar-powered aeration system 2007
- Phoslock application 2013
- Carp removal project 2012
- Improved stormwater management
- Updated septic design ordinance

Neither aeration nor PhosLock yielded any measurable benefits

Documented HABs

2018 Princeton Hydro Restoration and Management Project

- Identify, quantify and prioritize factors responsible for eutrophication and cyanobacteria blooms,
- Identify the correct combination of in-pond and watershed management actions,
- Develop cost estimates to implement plan and secure any required NYSDEC permits,
- Generate a schedule for plan implementation, and
- Create sampling plan to objectively and quantitatively track WQ improvements and ecological benefits.

Summary of Princeton Hydro 2018 Data

- Lake : Watershed ratio 23:1
- Moderately flushed system 62 days
- GW ~ 50% of monthly inflow
- Secchi low typically > 0.5 m
 - Water often brownish color
- <u>No evidence</u> of thermal stratification
- <u>No evidence</u> of "deep water" anoxia

Annualized hydraulic retention time = 62 days Annualized flushing rate ~ 6 times / year

Summary of Princeton Hydro 2018 Data

- TP very high $Surf_m = 0.104 \text{ mg/L}$ Deep_m = 0.118 mg/L
- SRP low > 0.004 mg/L
- Anoxic sediment P loading not an issue
- Chlorophyll a very high Usually > 40 mg/m³
- TSS always elevated, TSS_m > 45 mg/L, surf and deep concentrations similar
- Cyano blooms common but cyanotoxin concentrations low (< 4µg/l)

In-Situ Monitoring for Mill Pond, 4/24/2018

Station	DEPTH (meters)			Temp	Specific Cond.	Dissolved Oxygen		рН
	Total	Secchi	Sample	°C	mS/cm	mg/L	% Sat.	S.U.
	1.50	0.50	0.0	13.67	0.193	9.86	114.1	7.17
WQ1			0.5	12.82	0.190	10.00	93.5	7.30
			1.0	11.99	0.190	8.92	99.4	7.26
			1.4	11.73	0.187	9.68	96.1	7.23
		0.50	0.0	13.10	0.192	9.82	112.2	7.43
WQ2	2.50		0.5	13.03	0.195	9.60	109.5	7.70
			1.0	13.00	0.194	9.48	108.1	7.77
			1.5	12.95	0.194	9.44	107.5	7.80
			2.0	12.60	0.194	8.84	99.8	7.74
			2.4	12.32	0.196	8.85	99.4	7.70
WQ3	2.00	0.50	0.0	12.94	0.192	9.89	112.6	7.33
			0.5	12.78	0.195	9.70	110.1	7.43
			1.0	11.92	0.198	9.18	102.2	7.44
			1.5	11.88	0.197	8.46	94.0	7.39

In-Situ Monitoring for Mill Pond, 9/24/18								
Station	DEPTH (meters)			Temp	Specific Cond.	Dissolved Oxygen		рН
	Total	Secchi	Sample	°C	mS/cm	mg/L	% Sat.	S.U.
			Surface	20.05	0.215	8.44	91.3	6.68
WQ1	WQ1 1.4	0.2	0.5	19.93	0.213	8.01	86.5	6.81
			1.0	19.92	0.215	6.37	68.7	6.93
	2.4	0.3	Surface	20.47	0.217	7.55	82.4	6.62
			0.5	20.50	0.215	7.62	83.1	6.72
WQ2			1.0	20.49	0.217	7.61	83.0	6.77
			1.5	20.49	0.216	7.66	83.6	6.81
			2.0	20.49	0.216	7.52	82.4	6.88
WQ3	1.8	0.3	Surface	20.02	0.215	8.18	88.5	6.51
			0.5	20.05	0.215	7.84	84.7	6.65
			1.0	20.04	0.216	8.06	87.2	6.74
			1.5	20.01	0.215	7.93	85.8	6.77

Water Quality Data Surface and Deep

Data	Chl a (mg/M³)		SRP (mg/L)		TP (mg/L)		TSS (mg/L)	
Date	Surface	Deep	Surface	Deep	Surface	Deep	Surface	Deep
4/24/2018	44.2	50.1	0.008	0.004	0.09	0.08	28	34
6/5/2018	11.3	43.9	0.018	0.003	0.11	0.13	31	31
7/16/2018	26.2	36.4	0.003	0.002	0.09	0.13	47	41
7/30/2018	51.6	78.1	0.003	0.001	0.11	0.13	72	65
8/27/2018	147.4	145.8	0.001	0.001	0.136	0.139	58	52
9/24/2018	115.7	63.7	0.0038	0.0021	0.0847	0.0991	51	50

 $\mathcal{C}\mathcal{W}\mathcal{C}$

Lake Sediment Analysis

- Collected eight (8) sediment cores
 - Cores hand-driven to point of refusal (~ 0.5 1m)
 - Retrieved and examined in field for any evidence of striation, odor, reduced organic content, residual macrophyte/leaf detritus
 - Returned to lab for TP and grain size analysis
- Sediments found to be composed mostly of silts/clays, reduced organic material (Org ~30%)
- Sediment TP concs. 542-1062 mg/kg

Sediment Core

What's role of sediment resuspension on lake eutrophication?

Role of Carp On P Loading

- Mill Pond has a large common carp population
- 2012 over 6,000 lbs removed via netting
- Carp significantly impact water quality
 - Direct nutrient inputs (defecation)
 - Indirect nutrient inputs (bioturbation) and alteration of littoral plant community)
- Carp responsible for lack of littoral vegetation and persistent turbidity of the lake

Carp Bioturbation Impacts, Lamarra, 1974

Role of Carp On P Loading

- Computed P Load due to carp <u>bioturbation</u> only
 - Loading rate 5 mg/m²/day
 - Lake bottom area 372,000 m²
 - Loading period 245 days
 - Computed load 455.7 kg/yr
 - Adjusted by 50% to account for settling
- Total P load = 227.85 kg/yr

Modeled External/Internal TP Load

TP Load	lood (ka/ur)	% Load	
Source	Load (kg/yr)	% LUau	
Land Use (SW Runoff)	200.4	33.75	
Animals	8.6	1.44	
Stream Bank	2.0	0.33	
Groundwater	32.8	5.52	
Septic	67.2	11.32	
Internal - Oxic	26.8	4.43	
Internal – Carp (bioturbation)	227.85	38.39	
Internal - Geese	27.99	4.71	
Total		100.0%	

What The Data Is Telling Us

- Lake well mixed, non-stratified and no evidence of anoxia...aeration not needed
- Lake very turbid; due to TSS and Phytoplankton (as per elevated Chl a concentrations)....clarity < 0.5 m
- Mean TP, Chl a concentrations very high, but SRP concentrations moderate

What The Data Is Telling Us

- External P load high 200.4 kg/yr (33.75% of total)
- Septic P load moderate and manageable 67.2kg/yr (11.3% total load)
- Internal sediment P load under oxic conditions is low (<4.43%)
- Carp related P loading is high 227.85 kg/yr (38.39% of total load)

Management Recommendations

- Focus on <u>manageable</u> sources of P
 - Stormwater runoff
 - Septic

• Carp

Target carp removal as primary restoration effort

- No need to aerate lake, not stratified and internal sediment load low
- Data do not support need for nutrient inactivation (alum or alum surrogate treatment of lake sediments

Carp Removal

- Conduct detailed fishery survey to quantify the amount of carp in lake
- Proposal to conduct baited box net removal program.
- Advocate active removal effort using recreational anglers/bow anglers.

Carp Removal Options

- Gill Nets
- Electroshocking
- Recreational anglers
- Bow anglers
- Baited box nets

Deal Lake Carp
Contest
Held annually

- Cash prizes given for largest and greatest number of carp.
- Fish taken by local commercial fishermen for use as chum and lobster pot bait.

Recreational Fishing

A HEALTHY WAY TO PROPERLY CLEAN AND COOK CARP

For more helpful fish consumption information go to:

www.FishSmartEatSmartNJ.org

Baited Box Nets

Photo Courtesy of Carp Solutions - http://carpsolutionsmn.com

Advantages of Baited Box Nets

- Fish come to you!
- Highly selective; bycatch minimal.
- Not size selective.
- High catch per unit effort.
- Relatively cost effective.

Mill Pond, NY & Deal Lake, NJ

- Proposals in place to conduct during summer of 2019 intensive carp removal effort using baited box nets.
- Nets deployed and baited with cracked corn 1 week in advance to entice carp to congregate.
- Conduct fish removal over 1 week period and repeat 2-4 weeks later.
- Collected fish go to commercial fishermen (bait) or organic farmers (fertilizer).

Summary

- Common carp invasive fish species.
- Proven ability to disrupt fishery and create water quality problems.....perhaps even HABs.
- Negative aspects of control programs
 - Prolific
 - Difficult to catch
 - Public perception
- Baited box nets promising option

Thank You....

Stephen J. Souza, Ph.D. Clean Waters Consulting, LLC SJSouza.CWC@gmail.com

Clean Waters Consulting, LLC