Using Grass Carp to Control Aquatic Vegetation: Practices, Uncertainties, and Consequences

Alejandro Reyes Aquatic Ecologist Northeast Aquatic Research

Overview

Grass Carp Basics

- Vegetation management
- Grass carp history
- Practices in NY

Stocking Uncertainties

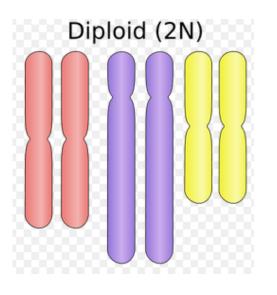
- Surface vs. vegetated acreage
- Feeding preference
- Age and growth
- Mortality estimates

Best Practices

- Case studies
- Stocking recommendations
- Risk assessment
- Final thoughts

Aquatic Vegetation Management

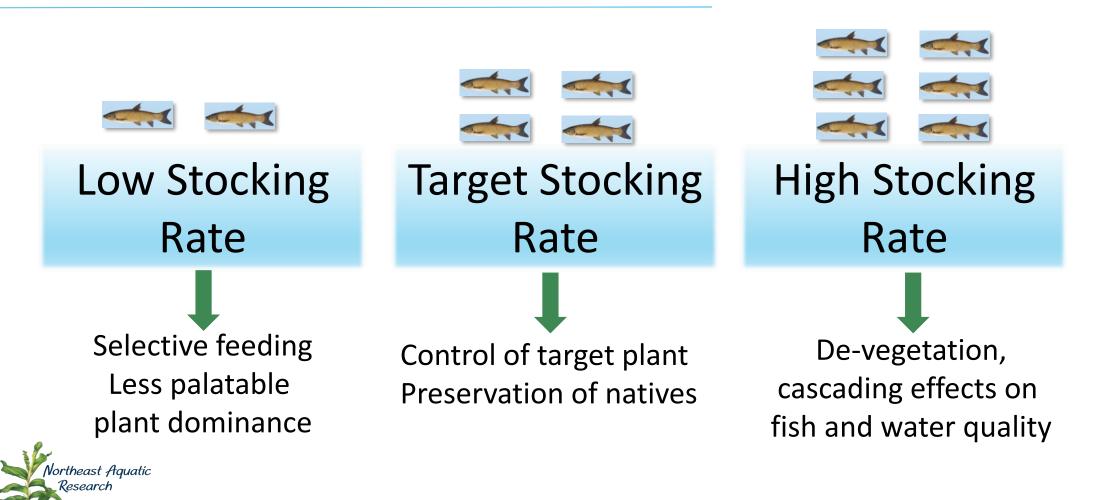
- Need to control invasive and nuisance aquatic plant species
 - Outcompete native plants
 - Impact fisheries
 - Impact water quality
 - Declines in property values
- Limited techniques available
 - Herbicides
 - DASH harvesting
 - Drawdown



What are Grass Carp?

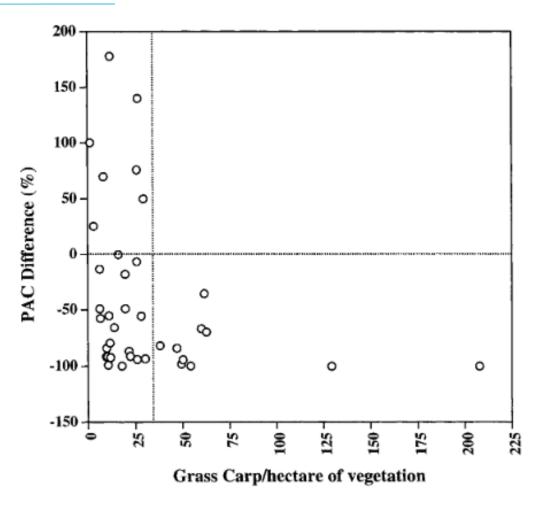
- Ctenopharyngodon idella
- Native to large coastal rivers in East Asia
- First introduced in United States in 1963 in Arkansas
 - Fish and Wildlife Service Fish Farming Experimental Station
- Fish were diploid (non-sterile) at first, until development of triploid (Sterile) grass carp in 1985
- From 1985 to 2005, more than 7 million triploid grass carp were shipped throughout the country
- Extremely effective herbivores

https://en.wikipedia.org/wiki/Polyploidy May 5, 2021


Use of Grass Carp in NY State

- Hundreds of permits issued annually per region for grass carp stockings
 - Mostly in lakes with surface area less than 1 acre
 - Above 5 acres or permanent outflow: SEQRA review
 - Often need an outlet barrier to prevent escape
- 3 main stocking rates
 - 5 fish/acre: Low vegetation density
 - 10 fish/acre: Medium vegetation density
 - 15 fish/acre: High vegetation density
 - Based on surface area of entire lake

	Permit Duration: March 1 - November 30	partment of Environm	ental Conserval	tion				
	March 1 - November 30					Por Office Use Only		
		Triploid G	Triploid Grass Carp Stocking Permit Application					
	Permit Fee: No fee	For mo	ore information a vw.dec.ny.gov/pe	bout this licens rmits/25024.ht	ie visit: tml	License 4:		
	Applicant Information							
	Name:		First		*Da	te of Birth://		
	Address:		-1722		Mr.1.	MM 55 7777		
	Abbress. Street		Apartment/Unit	City		State Zip Code		
	Susiness/Organizatio	on Name ((† applicable)	Phone: (()	- <u> </u>	ail:		
P	ond Owner/Lessee Inf	ormation (*Complete	if different than	n above)				
	Name:		First		M.I.	Phone: ()		
4	Address:					State Zio Code		
P	ond Location & Charac	teristics						
-	Address:	zection City/Town		Cour				
	Principal Use(s) of Pond: (ch		ng 🗆 Bosting			Other:		
	Surface Area (Acres):	*Maximum Depth		*Average	Depth (reet):			
	Pond Type: Artificial/Man-made	"Water Supply: (Chee Spring Stream	sk ell thet epp(y) N		id has an outlet, he nearest body			
	Netural	Surface/rain wate		of wat	er it drains into:			
	ish Species applicable, list			f previously str	cked with grass	1		
fi	sh species in pond:		i	indicate the yea	ar and number st	ocked: Number stock		
	lant Species/Vegetatio Briefly describe	n						
	the plant problem: Indicate the plant species ar							
	Plant Species		Density (see descrip Low 🔲 Medium		Low - Plants scatte	y Classification and Descriptions red; small patches of dense growth may an easily be retrieved without fouling.		
		□	Low 🗆 Mediun	n 🗆 High	Medium = Interme High = Denze motz	date between low and high. usually abvious on surface of pand;		
			Low 🗆 Mediun	n 🗆 High	fishing lure being r			
	(must be submi	ed Document(s)	n)	(Before	Applicat rending this applic	ion Checklist ation, plazes verify the following) d with an asterisk (*) are comple		
	Map highlighting the locat	, etc.)			and dated below			
E.	and the second	alae state	ements made on t	his opplication o	rre punishable in i	eccordance to Section 210.45 of the		
		1 2 3 4						
	DOSTAN	12 miles	eys for DEC to rev			Date		


Potential Outcomes

Intermediate Control is Desired, But Not Consistently Achieved

Grass Carp Stocking Density

- How many fish do you need for intermediate control of vegetation?
- Hanlon et al. 2000 examined stocking rates in 38 Florida lakes
 - Inflection point at 25 to 30 fish per veg hectare (62 to 74 acre) where submersed plants controlled, but not eliminated
- Bonar et al. 2002 looked at 98 lakes in Washington
 - 18% achieved intermediate control
 - Median rate for intermediate control: 24 fish per acre

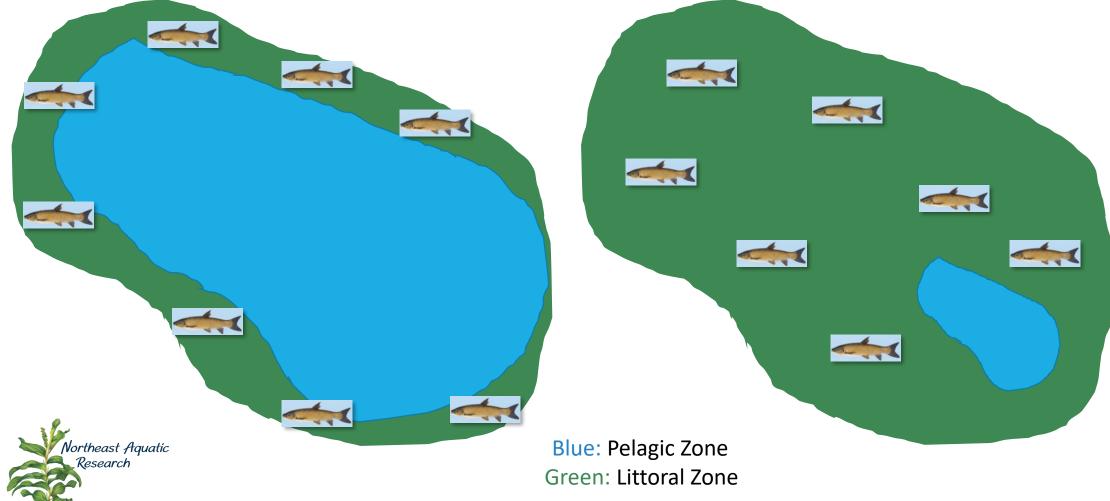
Stocking Challenges: Surface vs. Vegetated Acres

- Differential stocking rates for lakes
- Surface acre is easier, but much less accurate
- Vegetated acre is more widely accepted
 - Vegetated "palatable vegetation"

Research

Grass carp per....

- Surface Acreage
- Littoral Acreage
- Vegetated Acreage
- Vegetation Biomass



Lake Acres: 10 Vegetated Acres: 3 Total Fish: 150 Fish per Surface Acre: 15

Fish per vegetated acre: 50

Lake Acres: 10 Vegetated Acres: 9 Total Fish: 150 Fish Per Surface Acre: 15

Fish per vegetated acre: 16.6

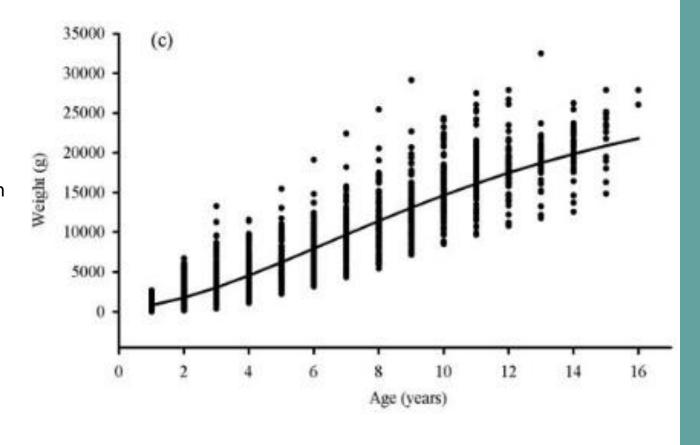
Stocking Challenges: Feeding Preference

- "Selective Generalists"
 - Will eat almost all aquatic plants, but have preferences for certain species
 - Like young, soft plants

- Just because plants are less preferred, does not mean they will not be eaten
 - Parrotfeather: Garner et al. 2013
 - Eurasian Watermilfoil: Van Dyke et al. 1984

Consumption Preference	Citation	
American Pondweed > Dioecious hydrilla > Elodea > Egeria > Curly leaf Pondweed > Water Primrose > Sago Pondweed > Chara > Spikerush > Parrotfeather > Eurasian Watermilfoil > Water hyacinth	Pine et al. 1991	
Water fern > Duckweed > Sago Pondweed > Eurasian Watermilfoil > Parrotfeather > Water Hyacinth	Catarino et al. 1997	

Stocking Challenges: Age and Consumption


Two common misconceptions

Vortheast Aquatic Research

- Grass carp live 8-10 years
 - Fish up to 30 years old found (Clemens et al. 2016)
- Older fish do not eat as much as younger fish
 - Younger carp have higher per weight consumption, not higher total consumption

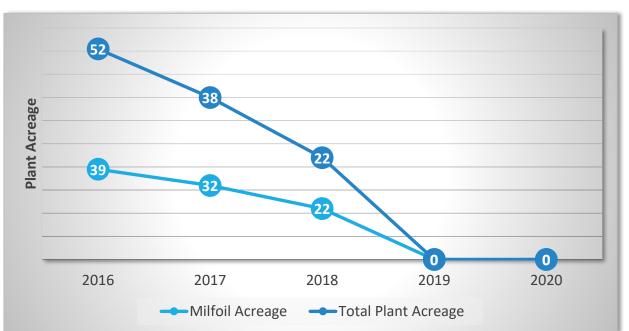
Low assimilation rate means high consumption rate (Wiley and Wike 1986)

Older fish need to consume lots of vegetation to maintain and add body weight

Stich et al. 2013

Stocking Challenges: Mortality Rates

- Sterile fish die off each year naturally
- Can be estimated from life tables
- What mortality rate should be chosen?
- Age specific vs. constant
- Rates can depend on vegetation coverage
 - Kirk et al. 2000 found higher mortality as hydrilla vegetation decreased


Low survivability -> underestimate population -> potential <u>overstocking</u>

High survivability -> overestimate population -> potential <u>understocking</u>

	A	В	С	D	E	F	G	Н	I	J
1	Grass Carp Stocking N	Iodel								
2	Survivability	0.85		Scenario	1:15%	Constan	t Mortali	ty		
3										
4		Age								
5	Year of Stocking	1	2	3	4	5	6	7	8	9
6	2012	490	0	0	0	0	0	0	0	0
7	2013	0	417	0	0	0	0	0	0	0
8	2014	0	0	354	0	0	0	0	0	0
9	2015	0	0	0	301	0	0	0	0	0
10	2016	0	0	0	0	256	0	0	0	0
11	2017	0	0	0	0	0	217	0	0	0
12	2018	0	0	0	0	0	0	185	0	0
13										

Squantz Pond, CT

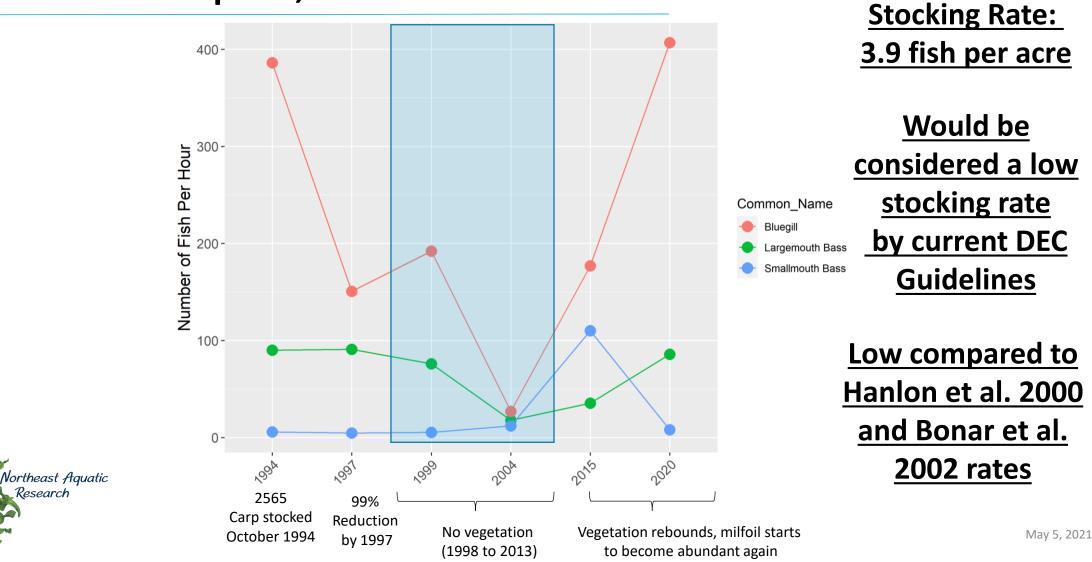
- 266 acre lake
- Milfoil topped out in most places ~39 acres in 2016
 - 52 total plant acres
- Historical drawdown
- 585 fish stocked in June 2017
- De-vegetation in 2 years

Increased grazing as time goes on

<u>Vegetation declines faster than</u> <u>carp die off</u>

Year	Fish Per Veg Acre
2016	11
2017	15
2018	21

Assuming 20% Mortality


Lake Mahopac, NY

- 656 acre lake in Putnam County, NY
- Stocked 2565 carp in 1994
- Within 3 years, vegetation was completely eradicated
- Vegetation was absent for over a decade, with only sparse plants being observed until 2013
- Significant impacts to catch rates for largemouth bass and bluegill

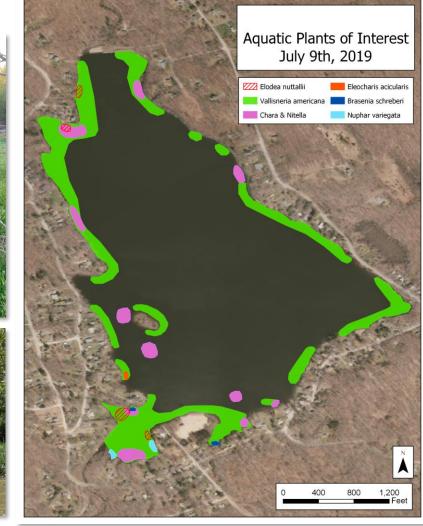
Lake Mahopac, NY

When Are Grass Carp Appropriate?

- "Southern model"
 - Extremely large man-made impoundments*
 - Low natural diversity*
 - High invasive plant coverage
 - To the point where other control methods are cost prohibitive
 - Target plant highly preferred*

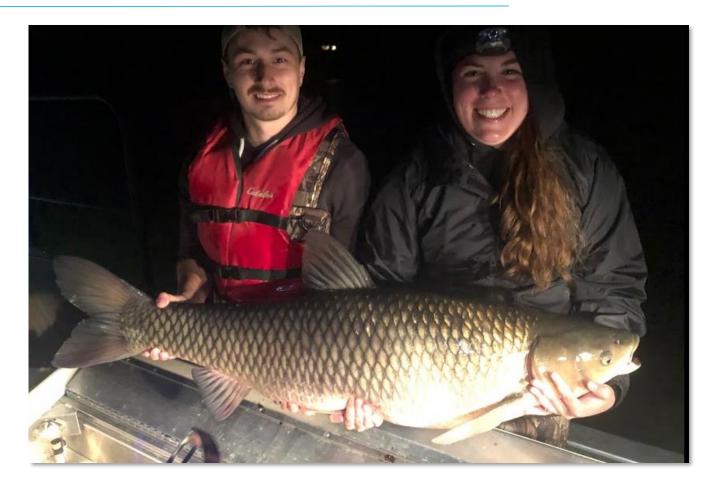
*Unlike Northeastern Lakes

Still, conservative stocking rates and integration of alternate techniques are used


Only re-stock if plant survey indicates either no change or increase in total plant abundance

If You Are Going To Use Grass Carp....

- Provide DEC with best available information
 - Current detailed aquatic plant survey
 - Total vegetation acreage
 - Coverage and density of each species
 - Rare and endangered plants
- Risk Management
 - How do I prevent deleterious impacts?
- Integrate with alternate techniques
- Habitat evaluation and restoration
- Deciding when to re-stock?



Final Thoughts

- Overstocking and understocking leads to undesirable outcomes
- Intermediate control of vegetation is desired, often difficult to achieve
- Significant uncertainties hinders ability to predict accurate stocking rate
 - Overwhelming majority of research from southern states
- More research is needed into NE grass carp populations to home in on effective, intermediate stocking rates
 - Mortality rates
 - Age and growth
 - Vegetation preference
 - Lag times

Questions?

Citations

- Bonar, S.A., Bolding, B. and Divens, M., 2002. Effects of triploid grass carp on aquatic plants, water quality, and public satisfaction in Washington State. North American Journal of Fisheries Management, 22(1), pp.96-105.
- Catarino, L.F., Ferreira, M.T. and Moreira, I.S., 1997. Preferences of grass carp for macrophytes in Iberian drainage channels. Journal of Aquatic Plant Management, 35(4), pp.79-83.
- Clemens, B.J., Spangler, J.J., Robertson, P.L., Galovich, G.M., Banner, C.R., Gunckel, S.L., Ketchum, L.L., Bowden, R.K., Spagnoli, S.T., Kent, M.L. and Kirk, J.P., 2016. Persistence of triploid grass carp in Devils Lake, Oregon. *Journal of Fish and Wildlife Management*, 7(1), pp.153-161.
- Hanlon, S.G., Hoyer, M.V., Cichra, C.E. and Canfield, D.E., 2000. Evaluation of macrophyte control in 38 Florida lakes using triploid grass carp. *Journal of Aquatic Plant Management*, 38, pp.48-54.
- Kirk, J.P. and Socha, R.C., 2003. Longevity and persistence of triploid grass carp stocked into the Santee Cooper reservoirs of South Carolina. *Journal of Aquatic Plant Management*, 41, pp.90-92.
- Pine, R.T. and Anderson, L.W.J., 1991. Plant preferences of triploid grass carp. Journal of Aquatic Plant Management, 29(2), pp.80-82.
- Stich, D.S., Dicenzo, V., Frimpong, E.A., Jiao, Y. and Murphy, B.R., 2013. Growth and population size of grass carp incrementally stocked for hydrilla control. North American Journal of Fisheries Management, 33(1), pp.14-25.
- Wiley, M.J. and Wike, L.D., 1986. Energy balances of diploid, triploid, and hybrid grass carp. Transactions of the American fisheries Society, 115(6), pp.853-863.

